- БИОФИЗИКА: РЕАКТИВНОЕ ДВИЖЕНИЕ В ЖИВОЙ ПРИРОДЕ
- Реактивный способ движения медуз
- Реактивное бегство морских моллюсков гребешков
- Реактивный насос личинки стрекозы-коромысла
- Реактивные импульсы нервной «автострады» кальмаров
- Реактивный двигатель кальмара
- Реактивное движение в живой природе — презентация
- Похожие презентации
- Презентация на тему: » Реактивное движение в живой природе» — Транскрипт:
БИОФИЗИКА: РЕАКТИВНОЕ ДВИЖЕНИЕ В ЖИВОЙ ПРИРОДЕ
Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе. Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки, предприимчивая личинка стрекозы-коромысла, восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.
По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе 😉
Реактивный способ движения медуз
Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи, функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м). Большинство медуз двигаются реактивным способом, выталкивая воду из полости зонтика.
Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги, обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида: Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.
Реактивное бегство морских моллюсков гребешков
Морские моллюски гребешки, обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения, они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством, морская звезда обхватывает его своими руками, вскрывает раковину и поедает…
Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).
Реактивный насос личинки стрекозы-коромысла
Нрав у личинки стрекозы-коромысла, или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса. Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения, личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.
Реактивные импульсы нервной «автострады» кальмаров
Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени, необходима повышенная проводимость нервов, которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель. Такая большая проводимость возможна при большом диаметре нерва.
Известно, что у кальмаров самые крупные в животном мире нервные волокна. В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с. А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм. Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч.
Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает, – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»
Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой».
Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м, включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м).
Реактивный двигатель кальмара
Реактивное движение, используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам. Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров. Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу 😉
В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель. Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты, в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б).
При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя.
«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.
1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.
На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.
Реактивный двигатель кальмара очень экономичен, благодаря чему он может достигать скорости 70 км/ч; некоторые исследователи считают, что даже 150 км/ч!
Инженеры уже создали двигатель, подобный реактивному двигателю кальмара: это водомёт, действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя, подобного воздушно-реактивному…
Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист, кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР, в атласы животных и в учебные пособия.
Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии, автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных».
Материалы этой статьи полезно будет применить не только на уроках физики и биологии, но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.
Литература:
§ Кац Ц.Б. Биофизика на уроках физики
Москва: издательство «Просвещение», 1988
§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988
Источник
Реактивное движение в живой природе — презентация
Презентация была опубликована 5 лет назад пользователемАлена Бобровская
Похожие презентации
Презентация на тему: » Реактивное движение в живой природе» — Транскрипт:
1 Реактивное движение в живой природе Исполнитель: Бобровская Елена Кирилловна Руководитель: Чайковская Светлана Геннадьевна
2 Цель моей работы: Разобраться какие представители в природе используют реактивное движение. И сравнить реактивные двигатели ракет и реактивное движение которое используют некоторые виды животных и растений.
3 Введение В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба. И на данный период времени космические полеты стали возможны в связи с реактивным движением. Которое мы смогли применить благодаря животным использующим этот тип движения. Если мы сможем еще больше изучить реактивное движение возможно будет усовершенствовать двигатели космических кораблей.
4 Задачи: Что такое реактивное движение? Какие представители животного мира используют реактивное движение? Как устроен реактивный двигатель кальмара? Какие растения используют реактивное движение для разбрасывания семян? Одинаковый ли принцип работы у реактивного двигателя и реактивное движение которое используют некоторые виды животных и растений?
5 Гипотеза: Реактивные двигатели основаны на том же принципе работы что и реактивное движение у животных и растений.
6 Методы: Поиск (изучение энциклопедической литературы) Анализ (изучить полученные сведения) Сравнение (сопоставление полученных данных с полученными результатами)
7 Существует несколько определений реактивного движения. Вот три основных: Под реактивным понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела. При этом возникает реактивная сила, сообщающая телу ускорение. Реактивное движение-это движение тела возникающее вследствие отделения некоторой его части с определенной скоростью относительно тела. Реактивное движение названо так потому что данный вид движения имеет первопричиной реакцию тела на толчок. Реактивное движение — движение тела, обусловленное отделением от него с некоторой скоростью какой-то его части. Реактивное движение описывается, исходя из закона сохранения импульса
8 Глава 1. Применение реактивного движения среди животных Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок. Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.
9 Каракатица Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.
10 Сальпа Тело цилиндрическое, длина от нескольких миллиметров до 33 см, покрыто прозрачной туникой, сквозь которую просвечивают ленты кольцевых мышц и кишечник. На противоположных концах тела расположены отверстия сифонов ротового, ведущего в обширную глотку, и клоакального. Сердце на брюшной стороне. Кровеносная система незамкнутая. Нервная система надглоточный ганглий с отходящими от него нервами. Над ним светочувствительный орган. Сальпа при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.
11 Кальмар Наибольший интерес представляет реактивный двигатель кальмара. Кальмары достигли высшего совершенства в реактивной навигации. При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед.
12 Флайинг-сквид Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше. Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.
13 Осьминог Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами. Мешковатые осьминоги плавают, конечно, хуже кальмаров. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед на два – два с половиной метра.
14 Личинка насекомого Существует способ перемещения в пространстве, когда отбрасываемая назад масса первоначально находится внутри движущегося тела. Прежде чем использовать этот принцип движения для надобностей техники, человек мог наблюдать его проявление в окружающей природе. Известно, например, что таким именно способом личинки стрекоз. Причём не все, а лишь длиннобрюхие, активно плавающие личинки стоячих и текучих вод, а также короткобрюхие ползающие личинки стоячих вод. Реактивное движение личинка использует главным образом в минуту опасности для того, чтобы быстро переместиться на другое место. Такой способ передвижения не предусматривает точного маневрирования и не пригоден для погони за добычей. Но личинки коромысел и не гоняются ни за кем — они предпочитают охоту из засады. Для этого у них имеется специальная очень сильная и быстрая хваталка, представляющая собой видоизмененную нижнюю губу, вооруженную двумя большими хватательными крючьями — такой нет ни у каких других насекомых. Задняя кишка личинки стрекозы, помимо своей основной функции, выполняет еще и роль органа движения. Вода заполняет заднюю кишку, затем с силой выбрасывается, и личинка перемещается по принципу реактивного движения на 6-8 см. Для дыхания нимфам также служит задняя кишка, которая как насос постоянно закачивает через анальное отверстие богатую кислородом воду.
15 Глава 2 Реактивное в мире растений Реактивное движение можно встретить и в мире растений. Например, созревшие плоды бешеного огурца при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м. Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. Тот же самый принцип использует бешенный огурец
16 Глава 3 Реактивное движение в технике Инженеры уже создали двигатель, подобный двигателю кальмара. Его называют водометом. В нем вода засасывается в камеру. А затем выбрасывается из нее через сопло; судно движется в сторону, противоположную направлению выброса струи. Вода засасывается при помощи обычного бензинового или дизельного двигателя.
17 Реактивный двигатель Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.Идея К.Э.Циолковского была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.
18 Заключение Принцип на котором основан реактивный двигатель кораблей и реактивный двигатель в живой природе один и тот же.
Источник