Что такое периодический способ замеса теста

Способы замеса теста

В зависимости от конструкции тестомесильной машины замес теста может быть периодическим или непрерывным. Тестомесильные машины периодического действия замешивают отдельные порции теста через определенные промежутки времени (ритм замеса составляет 10—30 мин). В машинах непрерывного действия дозировка сырья в месильную емкость, замес и выгрузка теста происходят непрерывно (поточно). Непрерывно-поточный способ замеса и приготовления теста имеет большие преимущества перед порционным тестоприго-товлением. При непрерывном процессе повышается производительность труда работающих и облегчаются его условия. Один тестовод может обслуживать до 3 тестомесильных машин непрерывного действия.

Непрерывные процессы легче автоматизируются. Непрерывно-поточное приготовление теста создает предпосылки для обеспечения параметров теста и происходящих в нем процессов на заданном уровне, тогда как в тесте, изготовляемом порционно, неизбежны колебания кислотности, влажности и других показателей. В то же время порционное приготовление теста отличается большей технологической гибкостью. В этом случае легче регулировать технологический режим, исправить ошибки в замесе и приготовлении теста, обеспечить двухсменный режим работы, перейти от выработки одного вида изделия к другому. При малой мощности печей или при выработке широкого ассортимента изделий на одной производственной линии порционный замес пока незаменим. Замес теста может быть осуществлен при различной затрате энергии, т. е. осуществлен с различной интенсивностью механической обработки теста в месильной машине. При интенсивном замесе микромолекулы клейковины частично дезагрегируются, но затем их структура перестраивается за счет разрыва одних и образования других связей, что улучшает эластичность теста.

Зерна крахмала при интенсивном замесе механически повреждаются. Они становятся более податливыми для действия Р-амилазы, отчего увеличивается количество сахара в тесте, возрастает газообразование. Интенсивно замешенное тесто характеризуется большей пластичностью и вязкостью, но меньшей упругостью по сравнению с тестом, замешенном при минимальных энергозатратах. Реологические свойства и химический состав теста после интенсивного замеса близки по свойствам и составу выброжен-ному тесту. В тесте возрастает содержание водорастворимых веществ (Сахаров, аминокислот и др.), полимеры муки более прочно связывают влагу. Интенсивный замес теста широко применяется при ускоренных способах приготовления пшеничного теста (особенно для булочных и сдобных изделий). При длительном брожении теста интенсивный замес теста технологически не оправдан. При интенсивном замесе теста брожение ускоряется в 2— 3 раза, объем изделий повышается на 10—20%, мякиш хлеба становится более эластичным, пористость — мелкой и равномерной. Вследствие увеличения количества Сахаров и аминокислот в тесте корка хлеба интенсивно окрашивается. В то же время при интенсивном замесе теста возрастает в 2—3 раза расход электроэнергии, интенсивный замес в большей степени повышает температуру теста, чем замес при обычных энергозатратах.

При интенсивном замесе важно установить оптимальный расход энергии в каждом конкретном случае, так как при излишней механической обработке теста клейковииный каркас разрушается, тесто становится липким и слабым. Влияние степени механической обработки пшеничного теста на процессы, происходящие в нем, и на качество хлеба было исследовано в работах ВНИИХПа и КТИППа. Для теста из пшеничной муки был установлен определенный оптимум удельной работы замеса (интенсивности), характеризуемый величиной энергии, затраченной на замес теста (в Дж/г теста). Чем выше сорт муки, тем выше должна быть интенсивность замеса, так как клейковина муки низких выходов более сильная и упругая. Чем сильнее мука, тем больше энергии следует расходовать на замес. По нормам, установленным ВНИИХПом, удельный расход энергии на замес теста из сильной, средней и слабой пшеничной муки составляет соответственно 40—50, 25—40 и 15—25 Дж/г теста. С повышением температуры теста энергия замеса должна быть снижена. Так, если при температуре 29 °С нужно затратить 33 Дж/г теста, то при 35 °С — только 26 Дж/г.

С увеличением дозировки дрожжей интенсивность замеса целесообразно несколько снизить, так как при большем количестве дрожжевых клеток тесто бродит интенсивно, что несколько ослабляет клейковину. Кроме того, дрожжи содержат активатор протеолиза — глютатион. С увеличением удельного содержания муки в опаре энергозатраты на замес должны быть снижены, так как в опаре достаточно полно проходят все процессы созревания. Если на замес безопарного теста надо затратить 41 Дж/г, то на замес теста, приготовленного на опаре с 25 % муки, требуется около 33 Дж/г. Ржано-пшеничное, и в большей степени ржаное, тесто вследствие слабой структуры белков замешивают с интенсивностью 8—10 Дж/г.

Л. Ф. Зверева, 3. С.Немцова, Н. П. Волкова

Технология и техно-химический контроль хлебо­пекарного производства

Источник

ГК «Униконс»

Продвижение и реализация комплексных пищевых добавок, антисептиков и др. продукции.

«Антисептики Септоцил»

Септоцил. Бытовая химия, антисептики.

«Петритест»

Микробиологические экспресс-тесты. Первые результаты уже через 4 часа.

Читайте также:  Безопасные способы для стимуляции родов

«АльтерСтарт»

Закваски, стартовые культуры. Изготовление любых заквасок для любых целей.

  • Вы здесь:
  • Библиотека технолога
  • Кондитерская промышленность
  • З.Н. Пашук, Т.К. Апет — Технология производства хлебобулочных изделий

4.1. Замес теста

Глава 4. Технологические стадии производства хлеба

4.1. Замес теста

Технологический процесс приготовления хлебных изделий состоит из следующих ста­дий: замеса теста и других полуфабрикатов, брожения полуфабрикатов, деления теста на куски определенной массы, формования и расстойки тестовых заготовок, выпечки, охлаждения и хранения хлебных изделий.

Процессы, происходящие при замесе теста. Замес теста — важнейшая технологиче­ская операция, от которой в значительной степени зависит дальнейший ход техноло­гического процесса и качество хлеба. При замесе теста из муки, воды, дрожжей, соли и других составных частей получают однородную массу с определенной структурой и физическими свойствами, чтобы в последующем при брожении, разделке и расстойке тесто хорошо перерабатывалось.

С самого начала замеса в полуфабрикатах начинают происходить различные про­цессы — физические, биохимические и др. Существенная роль в образовании пше­ничного теста принадлежит белковым веществам. Нерастворимые в воде белки му­ки, соединяясь при замесе с водой, набухают и образуют клейковину. При этом белки связывают воду в количестве, примерно в два раза превышающем свою массу, причем 75% этой воды связывается осмотически.

Набухшие белковые вещества муки образуют как бы каркас теста губчатой структу­ры, что и определяет растяжимость и эластичность теста.

Основная часть муки (зерна крахмала) адсорбционно связывает большое количе­ство воды, а также часть воды поглощается пентозанами муки.

Крахмал связывает воду в количестве 30% от своей массы. Но поскольку в муке крахмала значительно больше, чем белков, то количество воды, связанное белками и крахмалом, примерно одинаково.

В тесте одновременно образуется как жидкая фаза, состоящая из свободной воды, водорастворимых белков, сахара и других веществ, так и газообразная фаза, образо­ванная за счет удержания пузырьков воздуха, в атмосфере которого происходит замес, и за счет пузырьков углекислого газа, выделяемых дрожжами. Следовательно, тесто представляет собой полидисперсную систему, состоящую из твердой, жидкой и газо­образной фаз. От соотношения фаз в этой полидисперсной системе зависят физиче­ские свойства теста. Наряду с физическими и коллоидными процессами в тесте под действием ферментов муки и дрожжей начинают проходить и биохимические про­цессы. Наибольшее влияние оказывают протеолитические ферменты муки, которые дезагрегируют белок, что действует на физические свойства теста. Однако сопри­косновение теста во время замеса с кислородом воздуха значительно снижает дезагрегационное влияние протеолитических ферментов. В меньшей степени действуют и амилолитические ферменты, расщепляющие крахмал. Механическое воздействие месильного органа на тесто, образующееся при замесе, в первый период способствует набуханию белков и образованию губчатого клейковинного каркаса, что улучшает фи­зические свойства теста.

Белки ржаной муки отличаются от белков пшеничной муки тем, что в ржаном те­сте не образуют губчатого клейковинного каркаса. Значительная часть белков в тесте набухает и переходит в коллоидное состояние. В ржаной муке содержится около 3% высокомолекулярных углеводных соединений — слизей.

Из белков, слизей и других составных частей теста (растворимых декстринов, со­ли, водорастворимых веществ муки), перешедших в вязкое коллоидное соединение, в ржаном тесте образуется вязкая жидкая фаза, от состояния которой в значительной степени зависят физические свойства этого теста.

Ржаное тесто характеризуется большой вязкостью, пластичностью и малой упру­гостью, эластичностью. Оно мало растяжимо. На физические свойства оказывает влияние соотношение пептизированных и ограниченно набухших белков, которое в основном зависит от кислотности теста, от содержания в нем молочной кислоты. Поэтому тесто для ржаного хлеба изготавливается со значительно более высокой кис­лотностью, чем для пшеничного.

При недостаточно высокой кислотности ржаного теста пептизированные белки не переходят или слабо переходят в жидкую фазу. В процессе замеса теста повышается его температура, так как механическая энергия замеса частично переходит в тепловую, что в начальной стадии замеса ускоряет образование теста. При работе на тихоходных машинах (с частотой вращения месильного органа 25. 40 об/мин) повышение темпе­ратуры теста при замесе практического значения не имеет. Однако при замесе теста на быстроходных машинах выделяется большое количество тепла, что ведет к усиле­нию гидролитического действия ферментов и может привести к ухудшению физиче­ских свойств теста. Чтобы предотвратить эти изменения, применяют искусственное охлаждение теста. Для этой цели корпус тестомесильной машины снабжают водяной рубашкой.

Все описанные выше физические, коллоидные, химические и биохимические про­цессы в тесте взаимодействуют друг с другом, что вызывает непрерывное изменение физических свойств теста в ходе технологического процесса.

Способы замеса теста. В зависимости от конструкции тестомесильной машины за­мес теста может быть периодическим или непрерывным. Тестомесильные машины периодического действия замешивают отдельные порции теста через определенные промежутки времени (ритм замеса составляет 10. 30 мин).

Читайте также:  Мистические способы познания мира

В машинах непрерывного действия дозировка сырья в месильную емкость, замес и выгрузка теста происходят непрерывно (поточно).

Непрерывно-поточный способ замеса и приготовления теста имеет большие преи­мущества перед порционным тестоприготовлением.

При непрерывном процессе повышается производительность труда работающих и облегчаются его условия. Один тестовод может обслуживать до 3 тестомесильных машин непрерывного действия. Непрерывные процессы легче автоматизируются.

Замес теста может быть осуществлен при различной затрате энергии, то есть с раз­личной интенсивностью механической обработки теста в месильной машине.

При интенсивном замесе микромолекулы клейковины частично дезагрегируются, но затем их структура перестраивается за счет разрыва одних и образования других связей, что улучшает эластичность теста.

Зерна крахмала при интенсивном замесе механически повреждаются. Они стано­вятся более податливыми для действия (3-амилазы, отчего увеличивается количество сахара в тесте, возрастает газообразование. Интенсивно замешенное тесто характери­зуется большей пластичностью и вязкостью, но меньшей упругостью по сравнению с тестом, замешенном при минимальных энергозатратах.

Реологические свойства и химический состав теста после интенсивного замеса близки по свойствам и составу к выброженному тесту. В тесте возрастает содержание водорастворимых веществ (сахаров, аминокислот и др.), полимеры муки более прочно связывают влагу.

Интенсивный замес широко применяется при ускоренных способах приготовления пшеничного теста (особенно для булочных и сдобных изделий).

При длительном брожении теста интенсивный замес технологически не оправдан.

При интенсивном замесе теста брожение ускоряется в 2. 3 раза, объем изделий по­вышается на 10. 20%, мякиш хлеба становится более эластичным, пористость — мел­кой и равномерной. Вследствие увеличения количества сахаров и аминокислот в те­сте корка хлеба интенсивно окрашивается. В то же время при таком замесе возрастает в 2. 3 раза расход электроэнергии, интенсивный замес в большей степени повышает температуру теста, чем замес при обычных энергозатратах.

Источник

Виды замесов и процессы, протекающие при замесе теста.

Замес и образование теста

Замес теста- это перемешивание сырья, предусмотренного рецептурой, до получения однородной гомогенной массы, обладающей определёнными реологическими свойствами.

С помощью дозирующих устройств при замесе теста отмеривают в ёмкость тестомесильной машины и определённое количество муки, воды, солевого раствора и другого сырья в соответствии с рецептурой .

По характеру замес может быть периодическим и непрерывным , по степени механической обработки – обычным и интенсивным . Замес теста осуществляется на тестомесильной машине , рабочий орган которой перемешивает компоненты рецептуры в течение заданного промежутка времени ( 2…30 минут)

Периодический ( порционный )замес –это замес порции теста за определённый промежуток времени при однократном дозировании сырья , а непрерывный –замес теста при непрерывном дозировании определённых количеств сырья в единицу времени ( минуту ). При периодическом замесе тестомесильные машины замешивают отдельные порции теста через определённые промежутки времени , которые называютсяритмом. При непрерывном замесе поступление сырья в месильную ёмкость и выгрузка из неё теста осуществляется непрерывно.

Интенсивный замес— это замес теста при скоростной или усиленной механической обработке .

Образование теста при замесе происходит в результате ряда процессов, из которых важнейшими являются физико-механические , коллоидные и биохимические . Все эти процессы протекают одновременно и зависят от продолжительности замеса, температуры и от качества и количество сырья, используемого при замесе теста.

Физико-механические процессы протекают при замесе под воздействием месильного органа , который перемешивает частицы муки, воду, дрожжевую суспензию и растворы сырья, обеспечивая взаимодействие всех составных компонентов рецептуры .

Коллоидные процессы протекают при замесе наиболее активно. Все составные компоненты муки ( белки, крахмал, слизи, сахара и другие ) начинают взаимодействовать с водой. Всё, что способно растворяться ( сахара, минеральные соли, водорастворимые белки ) , переходит в раствор и наряду со свободной водой формирует жидкую фазу теста.

Крахмал муки, взаимодействуя с водой, связывает её адсорбционно ( поверхностно ). Крахмальные зёрна связывают адсорбционно до 44 % воды, причём повреждённые зёрна могут связать до 200% воды.

Белковым веществам муки принадлежит ведущая роль в образовании пшеничного теста и присущими ему свойствами упругости , пластичности и вязкости .

Нерастворимые в воде белковые вещества , образующие клейковину ( глиадиновая и глютениновая фракции белков ), в тесте связывают воду не только адсорбционно , но и осмотически . Осмотическое связывание воды в основном и вызывает набухание этих белков. Набухшие белковые вещества при замесе теста в результате воздействия месильного органа как бы “ вытягиваются “ из содержащих их частиц муки в виде плёнок или жгутиков , которые соединяются ( вследствие слипания, а частично и образования “смешиваются “ их химических связей ) с плёнками жгутиками набухшего белка смежных частиц муки. Это приводит к образованию в тесте губчато-сетчатой структурной основы , каркаса , который и обусловливает специфические реологические свойства пшеничного теста-его растяжимость и упругость . Этот белковый каркас называется клейковиной .

Белковые вещества в тесте способны связать и поглотить воды в 2 раза больше своей массы, что составляет 35…40 % добавленной при замесе воды. Из этого количества воды менее ¼ части связывается адсорбционно . Остальная часть воды ( ¾) связывается осмотически , что приводит к резкому увеличению объёма белков в тесте.

Читайте также:  Что такое приставочно суффиксальный способ наречия

Процесс набухания структурно слабых белков может перейти из стадии ограниченного набухания в стадию неограниченного , т.е . происходят пептизация белков и увеличение жидкой фазы теста .

Слизи муки при замесе теста почти полностью пептизируются и переходят в раствор . Они способны поглощать до 1500% воды.

Целлюлоза и гемицеллюлозы за счёт капиллярной структуры также связывают значительную долю воды . Если в тесте воды недостаточно , то поглощение её целлюлозой будет препятствовать набуханию белков и затруднять образование клейковины, что ухудшает свойства теста. Поэтому тесто из муки низких сортов замешивают с большей влажностью ( 46…49%) ,чем тесто из муки первого и высшего сорта ( 43…44%) .

Для ржаного теста характерным является то , что при его замесе клейковина не образуются . Поэтому ржаное тесто в отличие от пшеничного имеет незначительную упругость Оно более пластично и обладает большей вязкостью . Белковые вещества ржаной муки обладают большей способностью набухать неограниченно , т.е образовывать вязкий раствор . Большую роль в формировании ржаного теста играют слизи муки, так как они способны сильно набухать и образовывать вязкие растворы.

Биохимические процессы , вызываемые действием ферментов муки и дрожжей, протекают при замесе теста наряду с физико-механическими и коллоидными процессами. Основные биохимические процессы – это гидролитический распад белков под действием протеолитических ферментов ( протеолиз ) и крахмала под действием амилолитических ферментов ( амилолиз ) . Вследствие этих процессов увеличивается количество веществ , способных переходить в жидкую фазу теста, что приводит к изменению его реологических свойств.

В пшеничной и ржаном тесте различают три фазы : твёрдую , жидкую и газообразную . Твёрдая фаза-это зерна крахмала , набухающие нерастворимые белки, целлюлоза и гемицеллюлозы. Жидкая фаза –это вода, которая не связана с крахмалом и белками ( около 1/3 всей воды, идущей в замес) ; водорастворимые вещества муки ( сахара, водорастворимые белки, минеральные соли), пептизированные белки и слизи. Газообразная фазатеста представлена частицами воздуха, захваченными тестом при замесе , и небольшим количеством диоксида углерода , образовавшегося в результате спиртового брожения. Чем продолжительнее замес теста, тем больший объём в нём приходится на долю газообразной фазы . При нормальной продолжительности замеса объём газообразной фазы достигает 10 %, при увеличенной -20 % от общего объёма теста .

Жир при внесении в тесто может находиться как в жидкой фазе в виде эмульсии , так и в виде адсорбционных плёнок на поверхности частиц твёрдой фазы.

Соотношение отдельных фаз в тесте обусловливает его реологические свойства . Повышение доли жидкой и газообразной фаз ослабляет тесто , делая его более липким и текучим . Повышение доли твёрдой фазы укрепляет тесто , делая его упругим и эластичным .

В ржаном тесте по сравнению с пшеничным меньше доля твёрдой и газообразной фаз, но больше доля жидкой фазы.

Механическое воздействие на тесто на разных стадиях замеса может по-разному влиять на его реологические свойства . В начале замеса механическая обработка вызывает смешивание муки, воды и другого сырья и слипание набухших частиц муки в сплошную массу теста. На этой стадии замеса механическое воздействие на тесто обусловливает и ускоряет его образование . Ещё некоторое время после этого воздействие на тесто может улучшать его свойства , способствуя ускорению набухания белков и образование клейковины . Дальнейшее продолжение замеса может привести не к улучшению , а к ухудшению свойств теста, так как возможно возможно механическое разрушение клейковины.

Температура теста в процессе замеса несколько повышается в результате выделения теплоты гидратации частиц муки и перехода механической энергии замеса в тепловую, воспринимаемую тестом. На первой стадии замеса повышение температуры приводит к ускорению образования теста и достижение им оптимальных реологических свойств . Дальнейшее увеличение температуры теста увеличивает интенсивность гидролитического действия ферментов и снижает вязкость теста, что приводит к ухудшению его реологических свойств .

Все описанные процессы происходят при замесе одновременно и взаимно влияют друг на друга .Те процессы, которые способствуют адсорбционному и особенно осмотическому связыванию влаги и набуханию коллоидов теста и в связи с этим увеличению объёма и количества твёрдой фазы, улучшают реологические свойства теста, делая его более густым по консистенции , эластичным и сухим на ощупь . Те процессы, которые способствуют дезагрегации , неограниченному набуханию , пептизации и растворению составных компонентов теста, и в связи с этим увеличению количества жидкой фазы в нём, ухудшают реологические свойства теста, делая его более жидкими по консистенции , более тягучим , липким и мажущими . Поэтому знание механизма образования теста, формирования его твёрдой , жидкой , и газообразной фаз необходимо для правильного проведения замеса.

Источник

Оцените статью
Разные способы