Что такое экстраполяция способ

Научная электронная библиотека

Громова Н. М., Громова Н. И.,

2.4 Методы прогнозной экстраполяции

При формировании прогнозов с помощью экстраполяции обычно исходят из статистически складывающихся тенденций изменения тех или иных количественных характеристик объекта. Экстраполируются оценочные функциональные системные и структурные характеристики. Экстраполяционные методы являются одними из самых распространенных и наиболее разработанных среди всей совокупности методов прогно­зирования.

С помощью этих методов экстраполируются количественные параметры больших систем, количественные характеристики экономического, научного, производственного потенциала, данные о результа­тивности научно-технического прогресса, характеристики соотношения отдельных подсистем, блоков, элементов в системе показателей сложных систем и др.

Однако степень реальности такого рода прогнозов и соответ­ственно мера доверия к ним в значительной мере обусловливаются аргументированностью выбора пределов экстраполяции и стабиль­ностью соответствия «измерителей» по отношению к сущности рас­сматриваемого явления. Следует обратить внимание на то, что слож­ные объекты, как правило, не могут быть охарактеризованы одним параметром. В связи с этим можно сделать некоторое представление о последовательности действий при статистическом анализе тенден­ций и экстраполировании, которое состоит в следующем:

— во-первых, должно быть четкое определение задачи, выдвиже­ние гипотез о возможном развитии прогнозируемого объекта, обсуж­дение факторов, стимулирующих и препятствующих развитию данного объекта, определение необходимой экстраполяции и её допустимой дальности;

— во-вторых, выбор системы параметров, унификация различных единиц измерения, относящихся к каждому параметру в отдельности;

— в-третьих, сбор и систематизация данных. Перед сведением их в соответствующие таблицы еще раз проверяется однородность дан­ных и их сопоставимость: одни данные относятся к серийным изде­лиям, а другие могут характеризовать лишь конструируемые объекты;

— в-четвертых, когда вышеперечисленные требования выполнены, задача состоит в том, чтобы в ходе статистического анализа и не­посредственной экстраполяции данных выявить тенденции или симп­томы изменения изучаемых величин. В экстраполяционных прогнозах особо важным является не столько предсказание конкретных значе­ний изучаемого объекта или параметра в таком-то году, сколько своевременное фиксирование объективно намечающихся сдвигов, ле­жащих в зародыше назревающих тенденций.

Для повышения точности экстраполяции используются различные приемы. Один из них состоит, например, в том, чтобы экстраполи­руемую часть общей кривой развития (тренда) корректировать с уче­том реального опыта развития отрасли-аналога исследований или объекта, опережающих в своем развитии прогнозируемый объект.

Под трендом понимается характеристика основной закономер­ности движения во времени, в некоторой мере свободной от случай­ных воздействий. Тренд — это длительная тенденция изменения эко­номических показателей. При разработке моделей прогнозирования тренд оказывается основной составляющей прогнозируемого времен­ного ряда, на которую уже накладываются другие составляющие. Ре­зультат при этом связывается исключительно с ходом времени. Пред­полагается, что через время можно выразить влияние всех основ­ных факторов.

Под тенденцией развития понима­ют некоторое его общее направление, долговременную эволюцию. Обычно тенденцию стремятся представить в виде более или менее гладкой траектории.

Читайте также:  Как приворожить парня безопасным способом

Анализ показывает, что ни один из существующих методов не может дать достаточной точности прогнозов на 20-25 лет. Применяе­мый в прогнозировании метод экстраполяции не дает точных резуль­татов на длительный срок прогноза, потому что данный метод исхо­дит из прошлого и настоящего, и тем самым погрешность накапли­вается. Этот метод дает положительные результаты на ближайшую перспективу прогнозирования тех или иных объектов не более 5 лет.

Для нахождения параметров приближенных зависимостей между двумя или несколькими прогнозируемыми величинами по их эмпиричес­ким значениям применяется метод наименьших квадратов. Его сущ­ность состоит в минимизации суммы квадратов отклонений меж­ду наблюдаемыми (фактическими) величинами и соответствующими оценками (расчет­ными величинами), вычисленными по подобранному уравнению связи.

Этот метод лучше других соответствует идее усреднения как единичного влияния учтенных факторов, так и общего влияния неуч­тенных.

Рассмотрим простейшие приемы экстраполяции. Операцию экстра­поляции в общем виде можно представить в виде определения значе­ния функции:

, (2.7)

где — экстраполируемое значение уровня; L – период упреждения; Уt – уровень, принятый за базу экстраполяции.

Под периодом упреждения при прогнозировании понимается от­резок времени от момента, для которого имеются последние статис­тические данные об изучаемом объекте, до момента, к которому относится прогноз.

Экстраполяция на основе среднего значения временного ряда. В самом простом случае при предположении о том, что средний уровень ряда не имеет тенденции к изменению или если это изменение незначительно, можно принятьт.е. прогнозируемый уровень равен среднему значению уровней в прошлом.

Доверительные границы для средней при небольшом числе на­блюдений определяются следующим образом:

(2.8)

где ta – табличное значение t – статистики Стьюдента с n-1 степенями и уровнем вероятности p;— средняя квадратическая ошибка средней величины. Значение ее определяется по формуле . В свою очередь, среднее квадратическое отклонение для выборки равно:

(2.9)

где yt – фактические значения показателя.

Доверительный интервал, полученный как ta, учитывает неопределенность, которая связана с оценкой средней величины.

Общая дисперсия, связанная как с колеблемостью выборочной средней, так и с варьированием ндивидуальных значений вокруг средней, составит величину S 2 +S 2 /n. Таким образом, доверительные интервалы для прогностической оценки равны:

(2.10)

Экстраполяция по скользящей и экспоненциальной средней. Для краткосрочного прогнозирования наряду с другими приемами могут быть применены адаптивная или экспоненциальная скользящие сред­ние. Если прогнозирование ведется на один шаг вперед, то или , где Мt — адаптивная скользящая средняя; Nt — экспоненциальная средняя. Здесь доверительный интервал для скользящей средней можно определить по формуле (2.10), в которой число наблюдений обозначено символом n. Поскольку при расчете скользящей средней через m обозначалось число членов ряда, участвующих в расчете средней, то заменим в этой фор­муле n на m, равным нечетным числам.

При экспоненциальном сглаживании дисперсия экспоненциальной средней равна , где S -среднее квадратическое отклонение, вместо величины в фор­муле (2.10) при исчислении доверительного интервала прогноза следует взять величину или . Здесь a— коэффициент экспоненциального сглаживания, изменяется от 0 до 1. Если 0 2 +…ant n

Читайте также:  Способ написания изложения огэ

Источник

Что такое экстраполяция и что значить экстраполировать

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Бывают слова непонятные, но их смысл легко угадываем, например, слово «мотивация».

Но существуют и такие, значение которых без объяснений не понять.

Рассмотрим сегодня, что такое экстраполяция, где применяется термин, и уместно ли его использовать в разговорной речи.

Экстраполяция – что это

Как всегда, начнем с перевода для того, чтобы хоть немного понять, о чем идет речь. В переводе с латинского (да здравствует языковый донор!):

  1. «extrā» (экстра) – это «вне, снаружи»;
  2. «polire» (полире) – «изменять, выправлять».

Итак, получаем «изменять за пределами чего-либо».

Говоря простыми словами, экстраполировать – значит, распространять выводы, сделанные в отдельной части чего-либо, на всю остальную часть.

Например: «Я прошла половину пути за час, значит, я приду в точку назначения еще через час», «Сегодня мы сшили 100 защитных масок, значит, завтра мы сошьем такое же количество масок».

Синонимы к слову «экстраполяция»:

  1. выявлять тенденцию;
  2. обобщать данные и делать выводы.

Стоит учитывать, что на основе экстраполяции можно сделать предварительные выводы, но их нельзя считать доказанными. Но, тем не менее, экстраполяция – это наиболее достоверный метод прогнозирования.

Обратным к методу экстраполяции является интерполяция. Это вычислительный метод, согласно которому по определенной закономерности можно найти неизвестные промежуточные величины.

Рассмотрим метод интерполяции на простом примере. Допустим, заработная плата Иванова составляла:

  1. 2017 год = 12 тыс.руб.;
  2. 2018 г. = 14 тыс.руб.;
  3. 2020 г. = 18 тыс.руб.

Нужно выяснить, какая зарплата была у Иванова в 2019 году. Применяя метод интерполяции, вычисляем, что заработок Иванова составлял 16 тыс. рублей.

Стратегии экстраполяции

Существуют 3 стратегии, на основании которых может быть выполнена экстраполяция:

  1. на основе имеющейся тенденции (индукционная экстраполяция);
  2. на основе аналогового моделирования (т.е. применения методов аналогии явлений и процессов);
  3. на основе распространения выборочных данных на всю генеральную совокупность.

Чтобы было понятней, приведу пример: о необходимости внесения изменений в Конституцию РФ был проведен опрос граждан нашей страны. Очевидно, что опрашивалось не все население, а только некоторая его часть (т.е. выборка). Полученная информация была экстраполирована на всех граждан государства (т.е. на генеральную совокупность).

Где применяется термин «экстраполяция»

Как правило, в обычной разговорной речи данный термин не используется. Согласитесь, звучит довольно «коряво»: «Экстраполируя расходы за прошлый месяц, я выделю из зарплаты на домашнее хозяйство в этом месяце ту же сумму».

Термин применяется в сферах, где используются принципы экстраполяции, т.е. делается прогноз на будущее, исходя из анализа прошлого и настоящего.

Экстраполяция в математике

Изначально термин использовался только в математике. Вот как умными словами об этом говорится в Википедии:

Для справки: аппроксимация – это замена одних объектов другими, более простыми, но максимально похожими.

В экономике

Развитие экономики – процесс, подчиняющийся определенным закономерностям. Хоть нам иногда и кажется, что данным процессом правит случай, но это далеко не так.

Для того, чтобы спрогнозировать ход экономического развития, ученые следят за тенденциями всего, что происходит в экономике, выводят закономерность. Это и есть применение метода экстраполяции.

Самым важным и наглядным показателем состояния экономики является ВВП(валовый внутренний продукт ). Анализируя его численные показатели за прошлые годы, можно сделать вывод о тенденции его изменения в ближайшем будущем.

Стоит сделать оговорку: метод экстраполяции можно применять, если в государстве и в мире не произошло каких-либо форс-мажорных обстоятельств, например, как бушующая сегодня на планете пандемия. Очевидно, что при таких обстоятельствах спрогнозировать развитие экономики крайне затруднительно.

Экстраполяция в статистике

Применение метода экстраполяции в статистике – самый наглядный. Возьмем статистические показатели уровня жизни населения в нашей стране.

Как их получают? Ведь невозможно опросить каждого жителя государства, выяснить, сколько он получает, на что расходует деньги, что покупает из продуктов, сколько тратит на ЖКХ, на обучение детей и т.д.

Для расчета показателей уровня жизни определяют выборку населения дифференцированно по среднедушевым доходам. Затем среди домохозяйств, попавших в выборку, проводят ежемесячные опросы, сводят полученные сведения в единую базу данных по каждому субъекту РФ. После этого выполняют математические расчеты. Делают это как в усредненных показателях, так и дифференцированно по группам населения.

Как уже говорилось, расчеты выполняются по выборке домохозяйств, но экстраполируются полученные данные на все население страны.

В маркетинге

Напомню, маркетинг – это деятельность, направленная на увеличение продаж, и, следовательно – на рост прибыли.

Экстраполяция является одним из методов прогнозирования в маркетинге. А прогнозирование в этой сфере является важнейшим инструментом, позволяющим максимально быстро реагировать на изменения рынка.

Экстраполяция в маркетинге эффективна только для краткосрочного прогнозирования (не более 2 лет). Это связано с тем, что рынок – динамичная структура, находящаяся в зависимости от влияния сотен внешних факторов. Каждый меняющийся фактор увеличивает погрешность прогнозирования.

Приведу простейший пример экстраполяции в маркетинге: допустим, нужно узнать, сколько бутылок питьевой воды нужно привезти в магазин на следующую неделю, при условии, что в первую неделю месяца было продано 200 бутылок, во вторую – 220, в третью – 180. Используем экстраполяцию, рассчитываем среднее арифметическое: (200 + 220 + 180) /3 = 200 (бутылок) нужно на четвертую неделю месяца.

Читайте наш блог, это позволит расширить кругозор!

Автор статьи: Елена Копейкина

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (2)

Такой принцип нередко используется в повседневной жизни. Однако, экстраполяция может приводить к ошибочным умозаключениям и выводам, ведь не учитываются многие переменные и погрешности.

Экстраполяция, в каком-то смысле, — это стереотипное мышление, с тем же рядом чисел, это может быть совпадением и никакой логики там нет, но мы решим, что логика есть и сделаем ошибочный прогноз.

Источник

Читайте также:  При каких способах введения лс не подвергается пресистемной элиминации
Оцените статью
Разные способы