Что такое числовой способ кодирования информации

Кодирование числовой информации

Введение

Если у вас возникли какие-либо вопросы при изучении темы «Кодирование числовой информации», то звоните мне и записывайтесь на первый репетиторский урок по информатике и ИКТ. На моих индивидуальных уроках мы с вами закроем текущие пробелы в ваших знаниях и прорешаем колоссальное количество всевозможных тематических упражнений.

Общие понятие о числовой информации

Думаю, что превалирующее число школьников и студентов знает фразу: «Математика – царица всех наук!». А как известно, математика очень интенсивно оперирует числами, цифрами и действиями над числами.

Первый счет появился много тысячелетий назад, так как даже в очень древние времена люди столкнулись с потребностью в счете. Его возникновение связано с желанием человека проинформировать своих соплеменников о количестве обнаруженных им объектов, предметов. По началу люди просто делили предметы по принципу один-много. То есть не было обозначения для двух, трех, десяти и более различных предметов. Их просто обозначали в количественном отношении как много.

Постепенно люди научились подключать к арифметическому счету пальцы на своих руках. С их помощью можно было считать до пяти, а если использовать обе руки, то до десяти различных предметов. Именно десятичная система счисления получило свое развитие на основе использования при счете пальцев рук.

Вернемся в настоящий временной континуум. Для современного человека знания, позволяющие считать предметы и записывать числа, являются обязательными. Арифметика изучается в школе с первого класса. Цифры, используя которые мы записываем числа, называются арабскими. Алфавит арабских цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Всего десять различных цифр или состояний.

Числа можно классифицировать на две фундаментальные группы:

Дробные или действительные числа.

Каждое число из представленных групп может быть либо:

Примеры различных десятичных чисел:

-56 — целое отрицательное число;

12.78 — действительное положительное число;

0.0 — действительное число, равное нулю;

12000 — целое положительное число.

Наша цель – понять, каким образом производится кодирование числовой информации, выраженной целыми или дробными числами, которые являются положительными, отрицательными или равными нулю. Другими словами, мы должны понять, как персональный компьютер хранит, обрабатывает, копирует числа на «своем» уровне.

Свойства числовой информации

Конечность. Информация, выраженная числовым значением, должна быть конечной. Процессор персонального компьютера не сможет обработать число, которое не является конечным или завершенным. То есть прежде чем приступить к кодированию числовой информации, процессор должен быть уверен, что данное значение записано полностью и не будет изменено пользователем.

Понятность. Если мы говорим о кодировании числовой информации, которая представлена десятичным числом, то необходимо, чтобы само число состояло из элементов, которые будут понятны исполнителю при кодировании. Исполнителем является, в строгом приближении, процессор персонального компьютера. Например, число 129 состоит из трех цифр: 1, 2 и 9. Каждое из этих цифр входит в состав арабского алфавита. Если мы представим числовую информацию в виде значения 89J1’4, то подобное значение будет некорректно обработано процессором и он выдаст исключение, то есть сгенерирует ошибку. Почему? Потому что входное число 89J1’4 состоит из элементов: 8, 9, J, 1, ‘, 4, не каждое из которых входит в состав арабского алфавита. Например, элементы J и ‘ не являются арабскими цифрами.

Читайте также:  Для механического способа разрыхления используют тест

Приведенные два свойства являются ключевыми в алгоритмах кодирования числовой информации. Пожалуй, еще стоит отметить неосновное свойство – размер числа. Но в современном мире мощности персональных компьютеров постоянно увеличиваются и самые эффективные процессоры способы обрабатывать огромные значения.

Способы кодирования числовой информации

Сразу необходимо твердо уяснить следующее: процессор персонального компьютера взаимодействует с любыми данными исключительно на уровне цепочек, состоящих из 0 и 1. Набор нулей и единиц называют двоичным или бинарным кодом. То есть любые текстовые, символьные или числовые значения, которые понятны простому человеку, процессор преобразует в двоичный код. Следовательно, наша задача – научиться переводить числовые значения в бинарное представление, состоящее из цепочек 0 и 1.

Для полного осознания алгоритма кодирования числовой информации необходимо очень хорошо уяснить понятие «Машинное слово». Возможно вы слышали, что иногда пользователи говорят, что на их компьютерах установлена 32-х разрядная или 64-х разрядная система Microsoft Windows. Именно значение разрядности (в приведенном примере это 32 или 64) и отвечает за то, сколько бит информации будет выделено для хранения какого-либо математического значения при кодировании числовой информации. То есть, если нам дано положительное целое число 25, то при преобразовании его в бинарный код, ему будет выделено 32 или 64 бита. Также напомню, что один байт информации состоит из 8 битов.

Далее по тексту я буду работать на уровне 16-и разрядной системы. То есть любое кодирование числовой информации будет представлено с использованием машинного слова в 16 бит.

Кодирование целых положительных чисел

Это наиболее простой способ кодирования данных, так как для его реализации необходимо уметь переводить числа из десятичной системы счисления в двоичную систему. Ниже я приведу таблицу, в которой покажу кодирование целых положительных чисел различной значности.

Исходное десятичное число

Закодированное десятичное число в двоичном коде

Источник

Кодирование информации

Информация бывает разного вида, например:

— запах, вкус, звук;

— символы и знаки.

В разных отраслях науки, культуры и техники разработаны специальные формы для записи информации.

Код — это группа обозначений, которую можно использовать для отображения информации.

Процесс преобразования сообщения в комбинацию символов в соответствии с кодом называется кодированием .

  • Числовой способ — с помощью чисел.
  • Символьный способ — информация кодируется с помощью символов того же алфавита, что и исходящий текст.
  • Графический способ — информация кодируется с помощью рисунков или значков.

Примеры кодирования информации:

— для отображения звуков русского алфавита используют буквы (АБВГДЕЁЖ…ЭЮЯ);

— для отображения чисел используют цифры (0123456789);

— звуки записывают нотами и другими символами;

— слепые используют азбуку Брайля, где буква состоит из шести элементов: дырочек и бугорков.

Надо учитывать, что не зная принципы кодирования информации, один и тот же код, можно понять по-разному, например, число 300522005 можно посчитать за число, номер телефона или за количество населения.

Читайте также:  Способ применения силденафил с3 50мг

В компьютере кодируют введённую информацию: текст, изображения и звуки. В закодированном виде компьютер обрабатывает, хранит и пересылает информацию. Чтобы вывести информацию из компьютера в понятной для человека форме, её надо декодировать .

Методами шифрования занимается специальная наука — криптография .

В компьютере для кодирования любой информации используются только два символа: 0 и 1 , так как компьютерной технике проще реализовывать два состояния:

0 — сигнала нет (нету напряжения или не течёт ток);

1 — сигнал есть (есть напряжение или течёт ток).

Создание кода.

Одним битов можно кодировать два состояния: 0 и 1 (да и нет, чёрный и белый). При увеличении количества битов на один получится в два раза больше кодов.

Пример:

Два бита создают 4 разных кода: 00, 01, 10 и 11;

три бита создают 8 разных кодов: 000, 001, 010, 011, 100, 101, 110, и 111.

Кодирование различных видов информации

Кодирование текстов

При кодировании текста каждому символу присваивается какое-то значение, например, порядковый номер.

Первый популярный компьютерный стандарт кодирования текста имеет название ASCII (American Standart Code for Information Interchange), в котором для кодирования каждого символа используются 7 бит.

7-ю битами можно закодировать 128 символов: большие и маленькие латинские буквы, цифры, знаки препинания, а так же специальные символы, например, «§».

Стандарту создавали разные варианты, дополняя код до 8 бит (256 символов), чтобы можно было кодировать национальные символы, например, латышскую букву ā.

Но 256 символов не хватило, чтобы кодировать все символы разных алфавитов, поэтому создали новые стандарты. Один из самых популярных в наше время, это UNICODE. В котором каждый символ кодируют 2-мя байтами, получается в итоге 62536 разных кодов.

Кодирования графических данных

Почти все созданные и обработанные изображения, хранящиеся в компьютере, можно поделить на две группы:

Любое изображение созданное в растровой графике состоит их цветных точек. Эти точки называют пикселями (pixel) .

Для кодирования не цветных изображений обычно используют 256 оттенков серого, начиная от белого, заканчивая чёрным. Для кодирования всех цветов надо 8 битов (1 байт).

Для кодирования цветных изображений обычно используют три цвета: красный, зелёный и синий. Цветной тон получается при смешивании этих трёх цветов.

Размер изображения можно посчитать, умножив его ширину на длину в пикселях. Например, изображение размером 200⋅100 пикселей, занимает 60000 байт.

Кодирование звуков

Звуки появляются из-за колебаний воздуха. У звука есть две величины:

амплитуда колебания, которая указывает на громкость звука;

частота колебания, которая указывает на тональность звука.

Звук можно переделать в электрический сигнал, например, микрофоном.

Звук кодируют, после точного интервала времени измеряя размер сигнала и присваивая ему бинарную величину. Чем чаще проводятся эти измерения, тем лучше качество звука.

Пример:

На одном компакт диске, с объемом 700 Мб, может вместиться 80 минут звука CD качества.

Кодирование видео

Фильм состоит из кадров, которые быстро меняются. Кодированный фильм содержит информацию о размере кадра, используемых цветах, и количество кадров в секунду (обычно 30), как и способ записи звука — каждому кадру отдельно или всему фильму сразу.

Читайте также:  Способ легкого запоминания таблицы умножения

Источник

Кодирование числовой информации

Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Алфавит системы счисления состоит из символов, которые называются цифрами.

Система счисления — это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Все системы счисления делятся на две большие группы: позиционные и непозиционные. В позиционных системах счисления количественное значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.

Непозиционные системы счисления. Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков: зарубок, черточек, точек.

Такая система записи чисел называется единичной, так как любое число в ней образуется путем повторения одного знака, символизирующего единицу. Единичной системой счисления пользуются малыши, показывая на пальцах свой возраст или используя для этого счетные палочки.

Примером непозиционной системы, которая сохранилась до наших дней, может служить римская система счисления, которая начала применяться более двух с половиной тысяч лет назад в Древнем Риме. В основе римской системы счисления лежат знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для числа 10, а для обозначения чисел 100, 500 и 1000 используются латинские буквы С, D и М.

В римской системе счисления количественное значение цифры не зависит от ее положения в числе. Например, в римском числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину — число 10, три раза по 10 в сумме дают 30.

Чтобы записать число в римской системе счисления, необходимо разложить его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:

XXVIII =10 + 10 + 5 + 1 + 1 + 1 (два десятка, пяток, три единицы).

При записи чисел в римской системе счисления применяется правило: каждый меньший знак, поставленный слева от большего, вычитается из него, в остальных случаях знаки складываются. Например, римское число IX обозначает 9 (-1 + 10), а XI обозначает 11 (10 + 1). Число 99 имеет следующее представление в римской системе счисления: XCIX = -10 + 100 — 1 + 10.

Позиционные системы счисления. Каждая позиционная система счисления имеет определенный алфавит цифр и основание. Основание системы равно количеству цифр (знаков) в ее алфавите.

В позиционных системах счисления количественное значение цифры зависит от ее позиции в числе. Позиция цифры в числе называется разрядом. Разряды числа возрастают справа налево, от младших разрядов к старшим, причем значения одинаковых цифр, стоящих в соседних разрядах числа, различаются на величину основания.

В настоящее время наиболее распространенными позиционными системами счисления являются десятичная и двоичная. Десятичная система счисления имеет алфавит цифр, который состоит из десяти всем известных, так называемых арабских цифр <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>. Алфавит двоичной системы — две цифры <0, 1>(табл. 4.1).

Источник

Оцените статью
Разные способы