Что такое бифилярный способ намотки катушки

Бифилярная катушка и ее использование

Бифилярной называется катушка, намотанная двумя параллельными проводами, расположенными рядом друг с другом на одном общем каркасе, и изолированными друг от друга на всем протяжении намотки.

Само же слово «bifilar» можно перевести с английского как двухнитевой или двухпроводной, поэтому бифилярным проводом обычно называют провод, изготовленный в виде двух жил, изолированных друг от друга, — обычные двухжильные провода тоже можно в принципе отнести к бифилярным. То есть понятие «бифилярная намотка» относится к обмоткам , выполненным бифилярным проводом.

Так, в зависимости от направления намотки двух проводов и типу их соединения между собой в бифилярной катушке, можно получить четыре возможных варианта реализации таких катушек:

Намотка параллельная, соединение последовательное;

Намотка параллельная, соединение параллельное;

Намотка встречная, соединение последовательное;

Намотка встречная, соединение параллельное.

И как бы ни была намотана бифилярная катушка, при включении в цепь будет реализован один из двух вариантов взаимодействия токов двух образующих ее проводов.

Первый вариант — когда токи направлены в одну сторону, в этом случае магнитные поля токов обеих жил складываются, приводя к общему магнитному полю, которое будет больше магнитного поля каждой из жил бифиляра в отдельности.

Второй вариант — когда токи направлены в противоположные стороны, в этом случае магнитные поля токов двух жил будут гасить друг друга, в итоге общее магнитное поле будет нулевым, то есть индуктивность катушки будет близка к нулю.

В современной технике для создания проволочных резисторов используют бифилярные катушки параллельной намотки последовательного соединения (токи равны и направлены в противоположные стороны), чтобы свести паразитную индуктивность элемента к минимуму (суммарное магнитное поле близко к нулю).

В обмотках некоторых трансформаторов и сдвоенных дросселей импульсных источников питания, а также в обмотках некоторых реле, для подавления опасных коммутационных выбросов ЭДС самоиндукции применяют бифилярные обмотки.

Обмотка в два провода выполняет двойную функцию. Первый провод служит первичной обмоткой трансформатора или дросселя, а второй — защитной, ограничительной обмоткой, функция которой отработать коммутационный выброс ЭДС. В некоторых реле второй провод замыкается накоротко сам на себя, и рассеивает на себе обратный выброс в момент размыкания реле.

В импульсных источниках питания защитная обмотка накоротко не замыкается, она только ограничивает коммутационный выброс ЭДС, направляя энергию через диод обратно в источник питания или на снаббер, а цепь первичной обмотки оказывается таким образом защищена, напряжение на ключе не подскакивает выше безопасного, и ключ (транзистор) не перегорает.

Особого внимания заслуживает бифилярная катушка Тесла, которую ученый запатентовал в 1894 году, это патент США №512340. Сам Тесла в патенте отмечает, что для придания катушке большей собственной емкости, нужно соединить два провода бифиляра последовательно между собой так, чтобы токи были направлены в одну сторону, тогда хоть индуктивность и останется прежней, собственная емкость такой катушки возрастет. И чем выше напряжение, тем сильнее будет эффект этой межвитковой емкости.

Суть в том, что в бифилярной катушке Тесла напряжение между двумя соседними витками оказывается больше, чем при обычной однопроводной намотке на величину половины приложенного к катушке напряжения.

Никола Тесла использовал бифилярные катушки с целью придания цепям большей собственной емкости, и таким путем избегал применения дорогостоящих конденсаторов. В своих лекциях ученый упоминал бифилярные катушки именно как инструмент повышения собственной емкости зарядных и рабочих цепей различного высокочастотного оборудования высокого напряжения, которое он разрабатывал как для питания эффективных источников света, так и для передачи энергии на расстояние без проводов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Два типа бифилярных катушек — бифиляр Тесла и бифиляр Купера

Функционально можно выделить два особых типа бифилярных катушек параллельной намотки: у катушек первого типа токи в соседних витках направлены в одну и ту же сторону, тогда как у катушек второго типа токи соседних витков текут в противоположных направлениях. Яркой представительницей катушек первого типа является знаменитая бифилярная катушка Николы Тесла, пример катушки второго типа — бифилярная катушка Купера.

Читайте также:  Какого способа ориентирования не существует

Оба типа катушек необычны тем, что вместо того чтобы быть намотанными виток к витку одним проводом, данные катушки наматываются одновременно двумя проводами, после чего эти провода соединяются последовательно: у катушки по типу «бифиляр Тесла» конец (условно) одной части катушки соединяется с началом другой ее части, при этом свободные выводы готовой катушки оказываются с разных ее сторон, а у бифиляра Купера концы двух частей катушки объединяются с одной стороны, свободные же выводы ее оказываются с другой стороны. Описанные способы намотки применяются как в цилиндрическом, так и в плоском исполнении бифилярных катушек.

В результате получаются катушки, ведущие себя принципиально по разному в цепях постоянного и переменного тока. Давайте рассмотрим, в чем же заключаются особенности данных намоток, и как данные катушки поведут себя при различных типах тока через них.

Бифиляр Тесла в цепи постоянного тока

При прохождении постоянного тока через катушку, вокруг каждого ее витка возникает постоянное магнитное поле, пропорциональное величине данного тока. И сложив магнитные поля (магнитные индукции B) каждого последующего витка с магнитными полями предыдущих витков, получим суммарное магнитное поле катушки.

В данном случае, для бифиляра Тесла на постоянном токе, не важно что две части катушки соединены друг с другом последовательно, а важно здесь то, что токи в каждом ее витке имеют одинаковые величину и направление, словно катушка намотана одним цельным проводом — индуктивность (коэффициент пропорциональности между током в катушке и порождаемым им магнитным потоком) получается точно такой же, магнитное поле будет аналогичной величины, что и у обычной катушки такой же формы, с таким же количеством витков.

Бифиляр Тесла в цепи переменного тока

При прохождении через катушку типа «бифиляр Тесла» переменного тока, характерная намотка начинает проявлять себя ярко выраженной межвитковой емкостью, которая даже в состоянии «нейтрализовать» индуктивность на резонансной частоте. Витки, расположенные по отношению друг к другу так, что разность потенциалов между ними в каждой паре максимальна, представляют собой аналог параллельно подключенного к катушке конденсатора.

Выходит, что переменный ток определенной (резонансной) частоты такая бифилярная катушка пропустит беспрепятственно, оказав лишь активное сопротивление, словно это параллельный колебательный контур высокой добротности, а не катушка. Будучи включена в цепь параллельно источнику переменной ЭДС, такая катушка в состоянии накапливать энергию на резонансной частоте как параллельный колебательный контур, где энергия пропорциональна квадрату разности потенциалов между соседними витками.

Бифиляр Купера в цепи постоянного тока

У бифилярной катушки, где постоянные токи в соседних витках имеют противоположные направления и одинаковую величину (а именно такая картина наблюдается при постоянном токе в катушке, выполненной по типу «бифиляр Купера»), суммарное магнитное поле катушки окажется равно нулю, так как магнитные поля в каждой паре витков друг друга нейтрализуют. В итоге катушка данного типа будет вести себя по отношению к постоянному току как проводник с чисто активным сопротивлением, и никакой индуктивности не проявит. Так наматывают проволочные резисторы.

Бифиляр Купера в цепи переменного тока

При подаче переменного тока через катушку, витки которой расположены по отношению друг к другу по типу «бифиляра Купера», картина магнитного поля будет зависеть главным образом от частоты тока. И если длина провода в такой катушке окажется соизмерима с длиной волны пропускаемого через нее переменного тока, то и внешнее магнитное поле на такой катушке может быть реально получено как на длинной линии или антенне.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Что такое бифилярный способ намотки катушки

Всем кого это может касаться:

Известно, что я, Никола Тесла, гражданин Соединенных Штатов, проживающий в Нью-Йорке в округе и Штате Нью-Йорк, изобрел определенные новые и полезные Улучшения в Катушках для Электро-Магнитов и других Аппаратов, для которых, последующее является описанием со ссылками на иллюстрации, являющиеся неотъемлемой частью сего.

Читайте также:  Способы решения простейших показательных уравнений

В электрических аппаратах или системах, в которых используются переменные токи, самоиндукция катушек или проводников может, и фактически, во многих случаях, работает невыгодно, увеличивая паразитные токи, которые часто ведут к уменьшению того, что известно как коммерческая эффективность аппаратов, составляющих систему, или пагубно влияют на другие аспекты.

Известно, что эффекты самоиндукции, упомянутые выше, могут быть нейтрализованы путем пропорционального подбора емкости цепи с учетом самоиндукции и частоты токов. Это делалось до настоящего момента путем использования конденсаторов, применяемых как отдельные элементы.

Мое настоящее изобретение имеет целью избежать использование конденсаторов кои дорогостоящи, громоздки и сложны в обслуживании и сконструировать катушки сами-по-себе способные реализовать ту же конечную цель.

Здесь я бы хотел указать, что под термином «катушки» я прошу понимать спирали, соленоиды или, фактически, любой проводник различные части которого, исходя из требований применения или использования, были приведены в такие взаимоотношения друг-с-другом, которые ощутимо увеличивают самоиндукцию.

Я обнаружил, что в любой катушке существует определенная зависимость между ее самоиндукцией и емкостью, что позволяет току данной частоты и напряжения проходить через нее без сопротивления сверх оммического, или, другими словами, как будто она не обладает никакой самоиндукцией. Это происходит благодаря взаимной зависимости, существующей между особенным характером тока, самоиндукцией и емкостью катушки, последнее, количественно может нейтрализовать самоиндукцию на данной частоте. Хорошо известно, что чем выше частота или разница потенциалов тока, тем меньше емкость, необходимая для нейтрализации самоиндукции; следовательно, небольшая емкость, присутствующая в любой катушке, тем не менее может быть достаточной для достижения означенной цели если прочие условия выполнены. В обычных катушках разность потенциалов между соседними витками или частями спирали очень мала, таким образом, как конденсаторы, они обладают очень маленькой емкостью и отношение между значениями самоиндукции и емкости не достигает уровня, который удовлетворил бы рассматриваемые требования, так как емкость очень мала по сравнению с самоиндукцией.

Для того, чтобы достигнуть моей цели и существенно увеличить емкость любой данной катушки, я намотал ее таким образом, чтобы получить большую разность потенциалов между соседними витками или изгибами, и, так как энергия, запасенная в катушке, рассматривая ее как конденсатор, пропорциональна квадрату разности потениалов соседних витков, очевидно, что я могу таким образом получить значительно большее увеличение емкости при том же увеличении разности потенциалов между витками.

Я проиллюстрировал существо способа, который я применил для этого изобретения в предлагающихся схемах.

Фигура 1 является схемой катушки, намотанной обычном образом. Фиг. 2, является схемой способа намотки, который позволяет достигнуть целей моего изобретения.

Пусть А на Фиг.1, обозначает любую данную катушку состаящую из изолированных друг от друга витков. Пусть выводы этой катушки показывают разницу потенциалов в 100 волт, и что она имеет одну тысячу витков, далее, возьмем любые две соприкасающиеся точки на соседних витках и положим, что между ними будет присутствовать разность потенциалов в одну десятую вольта. Если теперь, как показано на Фиг. 2, проводник B будет намотан паралельно с проводником А и изолирован от него, а конец А будет соединен с начальной точкой B и общая длина двух проводников будет такой, что принятое количество витков в одну тысячу сохранится, то разница потенциалов между любыми двумя соприкасающимися точками на A и B будет пятьдесят вольт и, так как емкостной эффект пропорционален квадрату этой разности, энергия, запасенная во всей катушке теперь будет двести пятьдесят тысяч. Следуя этому принципу, я могу намотать любую данную катушку либо полностью, либо частично не только специфичным образом, здесь проиллюстрированным, но большим разнообразим способов, хорошо известных профессионалам, таким образом, что бы получить такую разность потенциалов между соседними витками, которая даст емкость, достаточную для нейтрализации самоиндукции при любом токе, который может быть задействован. Емкость, полученная таким своеобразным способом, обладает одним дополнительным достоинством: она распределена равномерно, что во многих случаях является важнейшим условием, а эффективность и экономичность достигается быстрее и легче с увеличением размера катушек, разности потенциалов или частоты токов.

Читайте также:  Ваш способ оплаты был отклонен укажите другой способ оплаты app store сбой подтверждения

Катушки, собранные из отдельных обмоток или проводников, навитых рядом друг с другом и соединенных последовательно, не являются чем-то новым сами по себе и я не буду описывать их более подробно чем здесь это необходимо. Однако, прежде, насколько я знаю, объектами внимания были вещи и результаты существенно отличные от моих, даже, свойства, присущие такой схеме намотки не были рассмотрены или поняты.

Рассматривая мое изобретение, важно понимать, что некоторые факты уже хорошо известны мастерам своего дела, а именно, отношения между емкостью, самоиндукцией, частотой и разницей потениалов тока. Поэтому, какую емкость необходимо получить в каждом конкретном случае и какая специальная схема намотки позволит достичь ее, может быть определено из других, уже хорошо известных соображений.

То, что я заявляю, как свое изобретение, это:

  1. Катушка для электрических машин, сопредельные витки которой формируют части цепи между которыми существует разность потениалов, достаточная для получения в катушке емкости, способной нейтрализовать самоиндукцию, как описано выше.
  2. Катушка, составленная из соприкасающихся изолированных проводников, электрически соединенных последовательно и имеющих такую разность потенциалов, которая достаточна для появления в катушке, как целом, емкости, достаточной для нейтрализации ее самоиндукции, как было изложено.

Роберт Ф. Гейлорд,

Такой способ намотки катушки создает суммарную емкость между витками намного выше, чем при обычной намотке. По идее электрическая емкость катушки остается той же самой, но ввиду того, что межвитковое напряжение получается выше, чем при обычной намотке – реактивного сопротивление на высокой частоте уменьшается, а емкость увеличивается. Никола Тесла использовал бифилярные катушки с целью придания цепям большей собственной емкости, и таким путем избегал применения дорогостоящих конденсаторов. В своих лекциях ученый упоминал бифилярные катушки именно как инструмент повышения собственной емкости зарядных и рабочих цепей различного высокочастотного оборудования высокого напряжения, которое он разрабатывал как для питания эффективных источников света, так и для передачи энергии на расстояние без проводов.

Для того, чтобы сделать самостоятельно плоскую бифилярную намотку – предлагаю воспользоваться простым приспособлением. Для изготовления приспособления потребуется лист фанеры толщиной 10мм или менее, с размерами не менее 200 х 100мм. Разрежем фанеру пополам и из одной половины выпилим круг, диаметром 70мм. У второй половины срежем по дуге одну из сторон с радиусом в 30мм. Нарисуем на круге центр и сделаем 8 отрезков от центра к периферии с шагом угла 45 градусов. На расстоянии 20 мм и 60 мм от центра круга разметим и высверлим отверстия 8мм диаметром и соединим их пропилами. На второй детали высверливаем отверстие под винт М5. Так же я использовал деревянный брусок в качестве основания для приспособления, а так же для крепления струбцинами к столу во время намотки. Круг следует закрепить в патроне дрели и тщательно отшлифовать его наждачной бумагой разной зернистости для предотвращения повреждения или спутывания провода. Так же следует подготовить несколько дисков из плотной бумаги или пластика для вставки между двумя половинами фанеры. Толщина этих дисков должна быть равна, либо чуть меньше чем диаметр используемого провода, а диаметр дисков должен составлять не менее 20 мм.

Чтобы намотать бифилярную катушку, следует соединить две половины приспособления винтом с гайкой, не забывая установить заранее прокладку. Далее, свернутый пополам провод следует пропустить в любую из прорезей круга и стянуть приспособление гайкой. Затем выполняем намотку в любую сторону двумя проводами. Следует отметить, что круг должен иметь фаску, чтобы провод было удобнее вкладывать между двумя половинами приспособления. После окончания намотки временно фиксируем провод на основании скотчем. Далее берем клей, либо полоски скотча шириной не более 8мм (чтобы он смог пройти через прорези) и фиксируем катушку скотчем через 8 прорезей круга. После этого разбираем приспособление и аккуратно извлекаем катушку. Далее ее следует наклеить используя двухсторонний скотч или клей на любую гладкую и диэлектрическую поверхность.

Источник

Оцените статью
Разные способы