Что называют телом отсчета какими способами можно задать положение точки

Что называют телом отсчета какими способами можно задать положение точки

Движение. Виды движений. Описание движения. Система отсчета.

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

А) Равномерное прямолинейное движение материальной точки.

Б) Равноускоренное прямолинейное движение материальной точки.

В) Движение тела по дуге окружности с постоянной по модулю скоростью.

Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

1. Векторный способ описания движения

ОПРЕДЕЛЕНИЕ: Векторный способ описания движения – это описание изменения радиус-вектора материальной точки в пространстве с течением времени.

Рассмотрим движение точки М в некоторой системе отсчета Oxyz (рис.1). Зададим радиус-вектор точки r — вектор, соединяющий начало координат с этой точкой.

При движении точки M вектор r будет с течением времени изменяться, т.е. будет каким-то образом зависеть от времени. Эта зависимость r = r ( t ) представляет собой закон движения в векторном виде.

В процессе движения конец радиус-вектора будет описывать траекторию, а его изменение – перемещение s точки.

2. Координатный способ описания движения

ОПРЕДЕЛЕНИЕ: Координатный способ описания движения – описание изменения во времени координат точки в выбранной системе отсчета.

В декартовой системе координат положение точки определяется тройкой чисел ( x , y , z ) — ее декартовыми координатами.

Чтобы задать закон движения точки, необходимо знать значения ее координат в каждый момент времени. Закон движения в координатном виде в общем случае представляет собой систему трех уравнений: x = x ( t ), y = y ( t ), z = z ( t )

Между векторным и координатным способом описания движения существует непосредственная связь, а именно: числовые значения проекций радиус-вектора движущейся точки на координатные оси системы с тем же началом отсчета равны координатам точки: rx = x , ry = y , rz = z .

3. Естественный способ описания движения

ОПРЕДЕЛЕНИЕ: Естественный способ описания движения – описание движения вдоль траектории. Этим способом пользуются, когда траектория точки заранее известна.

Пусть точка М движется вдоль траектории АВ в системе отсчета Oxyz (рис.3). Выберем на траектории какую-нибудь неподвижную точку О 1 , которую будем считать началом отсчета, и определим положительное и отрицательное направления. Тогда положение точки M будет определяться расстоянием S от точки О 1 . При движении точка М переместится в точку М 1 , соответственно изменится ее расстояние от точки О 1 . Таким образом, расстояние S зависит от времени, а характер этой зависимости позволит определить положение точки М на траектории в любой момент времени. Закон движения в этом случае имеет вид: s = s ( t ) .

Читайте также:  За способами сприйняття інформація

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

Источник

Кинематика. Задание положения точки.

Положение точки в пространстве можно задать двумя способами: координатным и векторным.

При задании движения координатным способом с телом отсчета связывают какую-либо систему координат, например, декартовую. Движение точки М будет задано в том случае, если ее координаты будут известны, как функции времени:

Эти зависимости называются уравнениями движения точки в декартовых координатах. Они выражают текущие координаты движущейся точки в виде функций времени. Если точка движется, оставаясь все время в одной плоскости, можно ограничиться двумя уравнениями движения: x = x(t), y = y(t).

Векторный способ задания положения точки .

Допустим, М – движущаяся точка относительно тела отсчета А. В теле А в качестве точки отсчета выберем произвольную точку О и построим вектор Этот вектор называется радиус-вектором точки М.

Радиус-вектор – это вектор, соединяющий начало отсчета с положением точки в любой момент времени.

Когда точка М движется, радиус-вектор непрерывно изменяется во времени, поэтому существует некоторая вектор-функция времени Зная эту функцию, для каждого времени t можно построить вектор и тем самым найти положение движущейся точки в данный момент. Функция называется векторным законом (векторным уравнением) движения точки М.

Точка задается радиус-вектором, если известны его длина (модуль) и направление в пространстве, другими словами – значения его проекций rx, ry, rz на оси координат OX, OY и OZ, или углы между радиус-вектором и осями координат. При рассмотрении движения на плоскости:

Здесь за мы принимаем модуль радиус-вектора , а rx и ry являются его проекциями на оси координат, все три величины скалярны, x и y – координаты точки А.

Из этих уравнений видно, что между координатным и векторным способами задания положения точки существует связь.

Читайте также:  Сложный способ складывания салфеток

Источник

Способы описания движения. Система отсчета

Урок 3. Физика 10 класс

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Способы описания движения. Система отсчета»

Сегодня мы рассмотрим наиболее распространенные способы описания движения и более подробно остановимся на понятии системы отсчёта. Напомним, что для описания движения материальной точки нужно научиться рассчитывать положение точки в любой момент времени, относительно выбранного тела отсчета.

Например, если мы задаём положение точки в системе координат, то каждая координата будет зависеть от времени. То есть, чтобы описать движение точки нужно найти функцию зависимости каждой координаты от времени.

Для примера возьмем подвиг незабвенного барона Мюнхгаузена, который утверждал, что может летать на ядре. Если учесть большое расстояние, которое пролетает ядро, то Мюнхгаузена можно считать за точку. Пушка будет являться телом отсчёта, то есть, началом координат. Положение барона можно описать с помощью двух координат, поскольку он двигается только в одной плоскости.

Тогда, зависимости координат х и у будут описываться уравнениями:

Эти уравнения называются кинематическими уравнениями движения точки.

Линия, вдоль которой движется точка в пространстве, называется траекторией.

Движение может быть разным, и траектория может быть сколь угодно сложной. Движение называется прямолинейным, если траектория является прямой линией.

Если же траектория представляет собой кривую, то это движение криволинейное.

Другой способ описания движения — это векторный способ. На прошлом уроке мы познакомились с тем, как задавать положение точки с помощью радиус-вектора. Если точка двигается, то с течением времени, радиус вектор может изменять длину и направление. Таким образом, радиус-вектор являться функцией зависимости от времени:

Поскольку радиус-вектор определяется с помощью координат, то одно векторное уравнение эквивалентно трём скалярным уравнениям:

Как мы знаем, системой отсчёта называется совокупность тела отсчёта и связанной с ним системы координат и часов, с помощью которых измеряется время. В различных системах отсчёта движение одного и того же тела может быть описано по-разному. Например, если сбросить мяч с крыши дома, то в системе отсчёта, связанной с крышей, длина радиус-вектора будет увеличиваться. Но в системе отсчёта связанной с поверхностью Земли, длина радиус-вектора будет уменьшаться.

Читайте также:  Лизин способ применения л

Главное запомнить следующее: если выбрали тело отсчета, то все наблюдения, вычисления и уравнения должны быть связаны именно с этим телом отсчёта, как с началом координат.

Например, в каюте корабля все предметы остаются неподвижны, относительно корабля. Но, вместе с этим, все эти предметы двигаются относительно поверхности земли.

Таким образом, в системе отсчета, связанной с кораблем, координаты тел, находящихся в каюте, будут заданы постоянными величинами. В системе отсчёта, связанной с поверхностью земли, координаты будут задаваться в соответствии со скоростью движения корабля. Если мы предположим, что корабль двигается равномерно и прямолинейно, то меняться будет только одна координата. Если же мы предположим, что корабль покачивается на волнах, то координата зет будет задана периодичной функцией.

Примеры решения задач.

Задача 1. Самолёт летит в одной плоскости. В начальный момент времени самолёт находится на высоте 1000 м и на расстоянии 5 км от аэродрома. Постройте соответствующую систему координат и отметьте на ней самолёт в начальный момент времени.

Давайте выполним несколько упражнений. Допустим, самолёт летит в одной плоскости. В начальный момент времени самолет находится на высоте 1000 метров и на расстоянии 5 километров от аэродрома. Постройте соответствующую систему координат и отметьте на ней самолет в начальный момент времени.

Итак, очевидно, что телом отсчёта в данном случае является аэродром.

Задача 2. Если самолёт, двигаясь равномерно, ежеминутно поднимается на 1200 метров и удаляется от аэродрома на 3000 метров, то, как описать его движение?

Из формулировки этого вопроса мы можем извлечь следующее: в одинаковые промежутки времени, равные 1 мин, горизонтальное перемещение самолёта составляет 3000 метров, а вертикальное — 1200 метров.

Обратите внимание, что реальная скорость самолёта направлена так, что самолёт одновременно удаляется от аэродрома и в горизонтальном, и в вертикальном направлении. Поэтому, скорости, которые мы нашли — это проекции вектора скорости на оси х и у.

Источник

Оцените статью
Разные способы