- iSopromat.ru
- Решение задач, контрольных и РГР
- Набор студента для учёбы
- Мгновенный центр скоростей
- Содержание
- Положение мгновенного центра скоростей
- Более общий случай сферического движения
- Пример решения задачи
- Применение понятия мгновенного центра скоростей
- Примечания
- Литература
- Полезное
- Смотреть что такое «Мгновенный центр скоростей» в других словарях:
- iSopromat.ru
- Решение задач, контрольных и РГР
- Набор студента для учёбы
iSopromat.ru
Мгновенным центром скоростей (МЦС) при плоскопараллельном движении называют связанную с плоской фигурой точку, скорость которой в данный момент равна нулю.
Такая точка существует в каждый момент времени.
Теорема Эйлера-Шаля доказывает, что любое непоступательное перемещение фигуры в плоскости можно осуществить поворотом вокруг некоторого неподвижного центра.
Рис. 1.5 т C — Мгновенный центр скоростей
В соответствии с этим легко доказывается, что при плоскопараллельном движении в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нолю. Эту точку называют мгновенным центром скоростей (МЦС). В учебниках эту точку пишут с индексом V, например PV, CV.
При определении положения МЦС скорость любой точки может быть записана: VM=VCV+VMCV, где точка СV выбрана за полюс.
Поскольку это МЦС и VCV=0, то скорость любой точки определяется как скорость при вращении вокруг мгновенного центра скоростей.
Из рис. 1.5 видно, что мгновенный центр скоростей лежит в точке пересечения перпендикуляров, проведенных к скоростям точек, при этом всегда справедливо соотношение
На нижеприведенных рисунках показаны примеры определения положения мгновенного центра скоростей и приведены формулы для расчета скоростей точек.
- СV совпадает с точкой В VB=0. Шатун АВ вращается вокруг точки В
- МЦС лежит в «бесконечности»
В этом случае МЦС находится в “бесконечности”, т.е
Формулы справедливы при отсутствии проскальзывания в точке СV.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Решение задач, контрольных и РГР
Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.
Если стоимость устроит вы сможете оформить заказ.
Набор студента для учёбы
— Рамки A4 для учебных работ
— Миллиметровки разного цвета
— Шрифты чертежные ГОСТ
— Листы в клетку и в линейку
Источник
Мгновенный центр скоростей
Мгнове́нный центр скоросте́й — при плоскопараллельном движении точка, обладающая следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело.
Содержание
Положение мгновенного центра скоростей
Для того, чтобы определить положение мгновенного центра скоростей, необходимо знать направления скоростей любых двух различных точек тела, скорости которых не параллельны. Тогда для определения положения мгновенного центра скоростей необходимо провести перпендикуляры к прямым, параллельным линейным скоростям выбранных точек тела. В точке пересечения этих перпендикуляров и будет находиться мгновенный центр скоростей.
В том случае, если векторы линейных скоростей [1] двух различных точек тела параллельны друг другу, и отрезок, соединяющий эти точки, не перпендикулярен векторам этих скоростей, то перпендикуляры к этим векторам также параллельны. В этом случае говорят, что мгновенный центр скоростей находится в бесконечности, и тело движется мгновенно поступательно.
Если известны скорости двух точек, и эти скорости параллельны друг другу, и кроме того, указанные точки лежат на прямой, перпендикулярной скоростям, то положение мгновенного центра скоростей определяется так, как показано на рис. 2.
Положение мгновенного центра скоростей в общем случае не совпадает с положением мгновенного центра ускорений. Однако в некоторых случаях, например, при чисто вращательном движении, положения этих двух точек могут совпадать.
Более общий случай сферического движения
Согласно теореме вращения Эйлера, любое вращающееся трёхмерное тело, имеющее неподвижную точку, также имеет и ось вращения. Таким образом, в более общем случае вращения трёхмерного тела говорят о мгновенной оси вращения.
Пример решения задачи
Найдём скорость точки K для колеса, показанного на рисунке 1, если задана скорость центра колеса (точки С), его радиус и угол АСК:
Найдём сначала угловую скорость колеса в данный момент времени при его вращении вокруг мгновенного центра скоростей (вокруг точки А):
Теперь, зная угловую скорость, найдём скорость точки К:
Чтобы найти численное значение , надо знать расстояние КА. Найдём его с помощью теоремы косинусов:
или, учтя, что , получим
Вынесем R за знак корня:
Подставив заданые в условии численные значения, найдём:
Тогда, зная расстояние КА, можем найти численное значение скорости по формуле (*):
Ответ:
Заметим, что для решения задачи знать численное значение R не обязательно.
Действительно, подставляя в формулу (*) выражения для и для КА, получим
Применение понятия мгновенного центра скоростей
Данное понятие используется при анализе движения звеньев кривошипно-шатунного механизма (рис. 3). Например, если известна постоянная угловая скорость вращающегося кривошипа (на рисунке 3 показан красным цветом), то скорость поршня не будет постоянной по модулю. Чтобы вычислить скорость поршня в разных положениях и построить соответствующий график, можно воспользоваться понятием мгновенного центра скоростей [2] . В свою очередь кривошипно-шатунные механизмы применяются в двигателях внутреннего сгорания, поршневых насосах, поворотных гидродвигателях и многих других устройствах. Таким образом, использование понятия мгновенного центра скоростей позволяет производить расчёты, необходимые для выбора оптимальной конструкции указанных механизмов.
Движения коленного, локтевого, плечевого и др. суставов биофизики также исследуют с помощью мгновенного центра скоростей.
Улучшения тормозных характеристик автомобилей можно добиться путём выбора оптимальной конструкции педалей тормоза и соответствующих кинематических расчётов, проведённых с помощью мгновенного центра скоростей.
Примечания
- ↑ Показанные на рис. 1 скорости являются линейными
- ↑ Скорости поршня в разных положениях можно также рассчитать графически с помощью плана скоростей
Литература
- Тарг С. М. Краткий курс теоретической механики. Учеб. для втузов.— 10-е изд., перераб. и доп. — М.: Высш. шк., 1986.— 416 с, ил.
- Основной курс теоретической механики (часть первая) Н. Н. Бухгольц, изд-во «Наука», Главная редакция физико-математической литературы, Москва, 1972, 468 стр.
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Мгновенный центр скоростей» в других словарях:
мгновенный центр скоростей — Точка плоской фигуры, скорость которой в данный момент времени равна нулю. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика… … Справочник технического переводчика
мгновенный центр скоростей — Точка плоской фигуры, скорость которой в данный момент времени равна нулю … Политехнический терминологический толковый словарь
мгновенный центр скоростей — instantaneous centre of velocity Точка звена, скорость которой относительно системы отсчета в данный момент времени равна нулю. Шифр IFToMM: 2.3.3 Раздел: СТРУКТУРА МЕХАНИЗМОВ … Теория механизмов и машин
мгновенный центр вращения — Точка неподвижной плоскости, поворотом вокруг которой плоская фигура перемещается из данного положения в положение, бесконечно близкое к данному. Примечание. В каждый момент времени мгновенный центр вращения совпадает с мгновенным центром… … Справочник технического переводчика
Мгновенный центр ускорений — Мгновенный центр ускорений при непоступательном движении точка, находящаяся в плоскости движения тела, ускорение которой в данный момент времени равно нулю. Положение мгновенного центра ускорений в общем случае не совпадает с положением… … Википедия
МГНОВЕННЫЙ ЦЕНТР ВРАЩЕНИЯ — точка плоской неизменяемой фигуры, совершающей непо ступат. движение в своей плоскости, скорость к рой в данный момент времени равна 0. М. ц. в. лежит на пересечении прямых, проведённых в разл. точках фигуры перпендикулярно векторам скоростей… … Большой энциклопедический политехнический словарь
Центр в физике — В механике понятие о Ц. или связано с понятием о симметрии (см. Ось) вокруг него, или с понятием о месте приложения равнодействующей некоторой совокупности сил, приложенных к твердому телу. В кинематике. При рассмотрении скоростей точек какой… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Центр (физ.) — В механике понятие о Ц. или связано с понятием о симметрии (см. Ось) вокруг него, или с понятием о месте приложения равнодействующей некоторой совокупности сил, приложенных к твердому телу. В кинематике. При рассмотрении скоростей точек какой… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
СТРУКТУРА МЕХАНИЗМОВ — см. также о словаре аксоид аналог скорости точки аналог углового ускорения звена а … Теория механизмов и машин
МЦС — Международная церковь саентологии религ. МЦС Мобильная цифровая связь ООО организация, связь МЦС многоцелевой самолёт авиа МЦС … Словарь сокращений и аббревиатур
Источник
iSopromat.ru
Рассмотрим формулы и примеры определения положения мгновенного центра скоростей (МЦС) для различных твердых тел и механизмов при плоскопараллельном движении.
Теорема Эйлера-Шаля доказывает, что любое непоступательное перемещение фигуры в плоскости можно осуществить поворотом вокруг некоторого неподвижного центра.
В соответствии с этим легко доказывается, что при плоскопараллельном движении в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нулю.
Эту точку называют мгновенным центром скоростей (МЦС). В учебниках эту точку пишут с индексом V, например PV, CV.
При определении положения МЦС скорость любой точки может быть записана: VM = VCv + VMCv , где точка CV выбрана за полюс. Поскольку это МЦС и VCv=0, то скорость любой точки определяется как скорость при вращении вокруг мгновенного центра скоростей:
Из рисунка 2.16 видно, что МЦС лежит в точке пересечения перпендикуляров, проведённых к скоростям точек, при этом всегда справедливо соотношение:
На рисунке 2.17 показаны примеры определения положения МЦС детали кривошипно-шатунного механизма и приведены формулы для расчета скоростей точек.
На рисунках 2.18 — 2.21 приведены примеры определения положения МЦС.
В этом случае МЦС находится в «бесконечности», т.е.
- VA/2R=V0/R=VM/(R√2)=ω,
- VA/2R=V0/R=VB/(R+r)=ω,
- VA/(R+r)=V0/r=VN/(R-r)=ω
Формулы справедливы при отсутствии проскальзывания в точке CV.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Решение задач, контрольных и РГР
Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.
Если стоимость устроит вы сможете оформить заказ.
Набор студента для учёбы
— Рамки A4 для учебных работ
— Миллиметровки разного цвета
— Шрифты чертежные ГОСТ
— Листы в клетку и в линейку
Источник