Черчение способ концентрических сфер

Построение линии пересечения конусов методом концентрических сфер

На рисунке ниже изображены два конуса вращения. Их оси i1 и i2, пересекаясь в точке O, образуют плоскость α(i1∩i2), которая параллельна фронтальной плоскости проекций π2.

Для построения линии пересечения конусов, показанных на рисунке, целесообразно использовать метод концентрических сфер. Применение данного метода возможно в результате выполнения следующих условий:

  • пересекаются поверхности вращения (в частности, конус с конусом, конус с тором или цилиндром и т.д.);
  • оси поверхностей, пересекаясь между собой, образуют плоскость, которая параллельна одной из плоскостей проекций (в рассматриваемом примере пл. α(i1∩i2)∥π2).

Алгоритм построения линии пересечения

Построение линии пересечения начинают с нахождения характерных точек, которые определяют ее границы и видимость относительно плоскостей проекций.

Определение характерных точек

Плоскость α, образованная пересекающимися осями i1 и i2, является общей плоскостью симметрии двух конусов. На рисунке показан ее горизонтальный след h. Пересечение пл. α с конусами происходит по образующим S2A, S2B и S1C, S1D. Данные образующие ещё называют очерковыми, так как они очерчивают границы поверхностей (на фронтальной проекции).

Точки F’’, E’’, G’’, K’’, в которых пресекаются прямые S’’2A’’, S’’2B’’ с прямыми S’’1C’’ и S’’1D’’, определяют границы линии пересечения конусов в её проекции на плоскость π2. Для нахождения F’, E’, G’ и K’ проводят линии связи из F’’, E’’, G’’, K’’ до горизонтального следа h0α.

Определение промежуточных точек

Воспользуемся методом концентрических сфер для нахождения множества промежуточных точек линии пересечения. Центром, из которого проводятся вспомогательные сферы, является точка O пересечения осей i1 и i2 рассматриваемых конусов.

Радиус Rmax наибольшей сферы, применяемой в построениях, равен длине отрезка O’’G’’ – расстоянию от точки O до наиболее удаленной от нее точки G пересечения очерковых образующих.

Сфера минимального радиуса Rmin – это сфера, вписанная в один из конусов и пересекающая другой. На рисунке ниже Rmin= O’’H’’, где O’’H’’⊥ S’’2B’’.

Рассмотрим построение точек 1, 2, 3 и 4. Сфера радиусом Rmin пересекается с конусом, в которой она вписана, по окружности. Данная окружность проецируется на фронтальную плоскость проекций в виде отрезка P’’H’’. Кроме того, сфера радиусом Rmin пересекается со вторым конусом по двум окружностям, диаметры которых соответственно равны длинам отрезков M’’N’’ и T’’L’’. Таким образом, на поверхности сферы лежат три окружности, которые пересекаются в общих для двух конусов точках 1, 2, 3 и 4.

Фронтальные проекции 1’’, 2’’, 3’’, 4’’ находятся на пересечении отрезков M’’N’’, T’’L’’ с P’’H’’. Для нахождения горизонтальных проекций 1’, 2’, 3’, 4’ точек 1, 2, 3, 4 на плоскости проекций π1 из центра O’ проводим две окружности с диаметрами M’’N’’ и T’’L’’. Учитывая принадлежность точек соответствующим окружностям, по линиям связи определяем их горизонтальные проекции, как это показано на рисунке выше.

С помощью вспомогательной сферы радиусом Rvar, где Rmin ≤ Rvar ≤ Rmax, найдены точки 5 и 6. Как видно из построений, они находятся на пересечении двух окружностей, которые проецируются на фронтальную плоскость в виде отрезков W’’U’’ и Q’’V’’.

Читайте также:  Топ 10 способов парня

В описываемом способе решения каждая сфера играет роль посредника, содержащего на своей поверхности кривые (окружности), принадлежащие пересекающимся конусам. Действуя в соответствии с приведенным выше алгоритмом, необходимо найти такое количество точек, которое позволит определить геометрическую форму линии пересечения на каждой из проекций.

Найденные точки соединяем плавными кривыми с учетом их видимости. Как видно на рисунке, в результате пересечения конусов образовались две замкнутые линии. Они показаны красным цветом.

Источник

Способ концентрических сфер

ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА. ОСОБЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ.

СПОСОБ ВСПОМОГАТЕЛЬНЫХ ЭКСЦЕНТРИЧЕСКИХ СФЕР.

Способ концентрических сфер.

Рассмотрим построение линии пересечения двух поверхностей, когда в качестве поверхности-посредника используется сфера. При этом возможны два случая применения сфер:

1) вспомогательные сферы могут быть проведены из одного общего для всех сфер центра. В этом случае говорят о способе концентрических сфер,

2) вспомогательные сферы проводятся из разных центров. Этот способ называют способом эксцентрических сфер.

Предварительно скажем несколько слов о пересечении соосных поверхностей, т.е. поверхностей, имеющих общую ось вращения.

Пусть заданы две образующие линии (два главных меридиана) -прямая l и дуга окружности m (рисунок 12-1). При вращении их вокруг оси i будут описаны соответственно цилиндрическая и торовая поверхности. Каждая точка заданных линий при вращении вокруг оси i описывает в пространстве окружность, плоскость которой перпендикулярна оси вращения.

Полученные поверхности пересекаются, причем линий пересечения будет столько, сколько точек пересечения имеют сами образующие линии (меридианы). Поскольку в нашем случае они пересекаются в двух точках, будет и две линии пересечения поверхностей, которые представляют собой окружности (параллели).

В частном случае одной из соосных поверхностей может быть сфера, если центр дуги окружности m находится на оси вращения i.

Таким образом, если центр сферы находится на оси некоторой поверхности вращения, то эта поверхность пересекается со сферой по окружностям. Это свойство и положено в основу способа вспомогательных сфер.

Способ концентрических сфер следует применять в случаях, когда соблюдаются следующие три условия:

· пересекаются поверхности вращения или поверхности, содержащие семейства окружностей, по которым их могут пересекать концентрические сферы;

· оси поверхностей вращения пересекаются;

· поверхности имеют общую плоскость симметрии, параллельную одной из плоскостей проекций. Если же она не параллельна ни одной из плоскостей проекций, то необходимо произвести преобразование чертежа для достижения необходимых условий решения.

Пример 1. Построить линию пересечения конуса вращения с цилиндром вращения (рисунок 12-2).

Сначала определим некоторые опорные точки. Так как поверхности имеют общую плоскость симметрии, параллельную фронтальной плоскости проекций, то пересечение их контурных образующих в точках А и В определяет высшую и низшую точки линии пересечения.

Центр сфер 0 выбирают в месте пересечения осей цилиндра и конуса, т.к. только в этом случае сферы будут соосны с обеими поверхностями.

Определим радиус минимальной Rmin и максимальной Rmax сфер, которые будем использовать при решении задачи. Rmax определяется расстоянием от точки 0 до самой удаленной опорной точки.

Для определения Rmin необходимо из центра 0 опустить перпендикуляры на очерковые образующие поверхностей из центра 0 опустить перпендикуляры на очерковые образующие поверхностей. Больший из них принимается в качестве Rmin, т.к. сфера такого радиуса будет касаться одной и пересекать вторую поверхность, что дает возможность найти общие для обеих поверхностей точки — точки линии пересечения. При радиусе сферы меньшем Rmin она не будет иметь общих точек с одной из поверхностей; построения теряют смысл.

Читайте также:  Прочистка скважины гидродинамическим способом

Для построения случайных точек проводим сферы радиуса Rmin

· каждая поверхность содержит семейство окружностей, по которым её могут пересекать эксцентрические сферы, общие для обеих поверхностей.

Пример 2. Построить линию пересечения конуса вращения со сферой (рисунок12-3).

Плоскостью симметрии данных поверхностей является фронтальная плоскость, поэтому можно применить способ вспомогательных сфер. Каких?

Задачу можно решить как способом концентрических сфер, так и эксцентрических. Решим её вторым способом.

Центр сфер можно брать в любой точке оси конуса вращения. На рисунке 12-3 проведены три сферы радиусов RI, R2, R3. Каждая из этих сфер пересекается с каждой из данных поверхностей по окружности, точки пересечения которых будут точками линии пересечения.

На виде сверху точки находим с помощью параллелей конуса h¹,h²,h³.

Пример 2. Построить линию пересечения конуса вращения с тором (рисунок 12-4).

Эту задачу можно решить только способом эксцентрических сфер.

Обе поверхности имеют общую плоскость симметрии, параллельную фронтальной плоскости проекций, в которой расположены ось конуса и линия центров тора.

Как и во всех задачах на пересечение поверхностей, вначале определяем опорные точки. Самая верхняя и правая — т. А, расположенная на пересечении контурных линий. Чтобы найти нижнюю и левую т. В (точку касания контурных линий конуса и тора), необходимо из т. О опустить перпендикуляр на контурную образующую конуса; их пересечение определяет т.В.

Для построения дополнительных точек выделим одну окружность –m принадлежащую поверхности тора.

Центры всех сфер, которые будут пересекаться с тором по этой окружности, будут лежать на прямой n1 данной окружности C1 перпендикулярно к её плоскости. Эта прямая пересечёт ось конуса (т.к. они лежат в одной плоскости) в т. 01. Эта точка будет центром сферы, которая пересечёт поверхность конуса по окружности h1. Окружности m1 и h1 пересекаются в точках 1 и 2, которые будут принадлежать линии пересечения.

Для нахождения дополнительных точек нужно взять новую окружность на поверхности тора и все действия повторить.

На виде сверху точки линии пересечения находят при помощи параллелей конуса h.

Источник

Метод сфер | AutoCAD

Еще один метод построения линии пересечения поверхностей вращения – метод сфер. Он применяется в случаях, когда метод секущих плоскостей использовать нецелесообразно – например, когда оси одной или обеих поверхностей вращения расположены так, что при пересечении этих поверхностей с плоскостями, параллельными плоскостям проекций, образуются сложные фигуры. Один из таких случаев – когда оси поверхностей вращения пересекаются в пространстве. Пусть одна из поверхностей – цилиндр, а вторая – тело вращения, образованное кривой 2-го порядка. Оговоримся, что для применения метода сфер необходимо привести чертеж к такому виду, когда оси вращения обеих поверхностей параллельны одной из плоскостей проекций.

1. Пусть исходный чертеж выглядит так:

Читайте также:  Способы обеспечения исполнения обязательств поручительство задаток банковская гарантия

2. При построениях такого рода целесообразно применять концентрические сферы-посредники, центры которых расположены в точке пересечения осей исходных тел вращения. Эти сферы, пересекаясь с исходными телами, образуют окружности, а искомые точки линии пересечения будут общими точками пар окружностей, принадлежащим двум телам. Построим «крайние» сферы – самую большую и самую малую из всего диапазона. Видно, что самая большая из сфер пройдет через наиболее удаленную от центра точку пересечения поверхностей, а самая малая будет касаться «внутренней» поверхности одного из тел (сферы меньшего диаметра уже не пересекают оба тела, т.е. в построении не участвуют).

Эти сферы дадут нам первые точки пересечения поверхностей. Находим их так: сначала строим линии пересечения сферы-посредника с каждым из тел на фронтальном виде. Эти линии – окружности, которые на фронтальном виде превращаются в прямые:

3. Пересечение двух линий, образованных одной сферой, даст соответствующую точку искомой линии пересечения поверхностей (поскольку линия симметрична относительно вертикальной плоскости, в которой лежат оси обоих тел, на фронтальном виде будем строить только видимую часть линии. Итак, вот две первые точки:

Переносим эти точки на вид сверху. Здесь важно понимать следующее: точки лежат на окружностях, образованных пересечением сфер-посредников с каждым из тел, причем это утверждение справедливо для любых проекций. Поэтому нам нужно построить эти окружности на виде сверху для любого из тел (очевидно, что цилиндр в этом случае неудобен, поскольку его ось наклонена) и перенести на них точки с фронтального вида. Сферы, изображенные на виде сверху, можно удалить, чтобы они не мешали построениям:

4. Построим еще несколько сфер-посредников, охватывающих всю область пересечения тел. Одна из сфер должна пройти через вторую «пиковую» точку – самую нижнюю точку пересечения поверхностей. Кстати, строить эту сферу необязательно – эта точка, как и верхняя, явно видна на чертеже. Вот результаты построений для фронтальной проекции:

И для вида сверху:

Для того, чтобы не запутаться в множестве линий построения, можно удалять их после нахождения каждой точки. Также полезно выделить точки, находящиеся на виде сверху ниже «границы видимости», другим цветом. Эти точки на фронтальном виде расположены ниже оси цилиндра. Точка, отделяющая «нижние» точки от «верхних», лежит на оси цилиндра. В нашем случае она практически совпадает с точкой, лежащей на малой сфере, вообще же она требует отдельного построения:

После соединения полученных точек командой Spline и удаления всех вспомогательных линий получим такие результаты:

Стоит отметить, что команда Spline может не сразу дать правильное отображение линии пересечения, особенно на виде сверху. Может оказаться целесообразным рисовать отдельно «правую» и «левую» части кривой.

5. Осталось только сравнить наши построения с пересечением двух поверхностей, которое Autocad строит автоматически. Для этого изобразим исходные тела с помощью команд 3D-моделирования, объединим их и расположим рядом с полученными чертежами:

Как видим, метод сфер позволяет достаточно адекватно изображать пересечение сложных поверхностей вращения. И хотя сегодня он носит достаточно иллюстративный характер, разобраться в нем очень полезно для понимания основ геометрии и трехмерного моделирования.

Источник

Оцените статью
Разные способы