Человек изобрел много различных способов хранения информации

Эволюция носителей информации. Часть 1: от перфокарт до DVD

С древнейших времен люди искали способы записи и хранения различной информации. Сначала они рисовали на скалах и глине. Затем появился пергамент, а позже — бумага. В XX веке с появлением первых компьютеров хранить информацию стало легче, но эволюция носителей информации лишь ускорилась. Казалось бы, еще вчера мы записывали нужные нам файлы на дискеты. А сегодня мы уже пользуемся 256-гигабайтными флешками! В общем, развитие технологий хранения информации не стоит на месте. Поэтому в этот раз мы вспоминаем, с чего же началась история компьютерных носителей информации, и расскажем о том, каких результатов добилась индустрия к концу XX века.

В таком виде сохраняли информацию в былые времена

Станок Жаккара. Перфокарты

История носителей информации берет свое начало в начале XIX века. Причем в роли прародителя запоминающих устройств выступает — кто бы мог подумать! — ткацкий станок. Автором первого изобретения в области хранения данных стал французский изобретатель Жозеф Мари Жаккар. Долгое время он работал со станками в качестве подмастерья, ткача и наладчика, поэтому богатый опыт значительно помог ему в дальнейшей изобретательской деятельности. Итак, в чем же заключалась инновационная идея Жаккара? Несмотря на то, что производство ткани в то время являлось довольно сложным процессом, по своей сути оно представляло собой постоянное повторение одних и тех же действий. Жаккар пришел к выводу, что этот процесс можно автоматизировать.

Жозеф Мари Жаккар — создатель ткацкого станка, использующего перфокарты

Французский изобретатель придумал такую систему, которая использовала в своей работе специальные твердые пластины с отверстиями. Они и являлись первыми в мире перфокартами. Прежде подобные пластины использовались в станках Вокансона и Бушона, однако эти устройства были слишком дороги в производстве и по этой причине так и не прижились. В своей же разработке Жаккар учел все недостатки этих аппаратов. В пластинах было увеличено количество рядов отверстий, что обеспечило обработку большего числа нитей, а, следовательно, и повышение производительности станка. Кроме этого, был значительно упрощен процесс подачи пластин в считывающее устройство — набор щупов, связанных со стержнями нитей. При проходе пластины щупы проваливались в отверстия, поднимая вверх соответствующие нити и образуя основные перекрытия в ткани. Таким образом, определенная комбинация отверстий на пластине позволяла создать ткань с нужным узором.

Ткацкий станок Жаккара

Первый автоматизированный станок Жаккар создал в 1801 году и на протяжении еще нескольких лет дорабатывал его. За свои достижения изобретатель получил пенсию в 3000 франков и одобрение Наполеона. Однако ни сам Жаккар, ни французский император не имели ни малейшего понятия, насколько важным станет это изобретение в будущем.

В 30-х годах XIX века на разработанные Жаккаром перфокарты обратил внимание английский математик Чарльз Бэббидж. В то время ученый ум трудился над созданием аналитической машины и решил использовать в ее конструкции перфокарты. Для этого англичанин даже совершил путешествие во Францию с целью подробно изучить станки Жаккара. Увы, но из-за низкого уровня технологий и недостатка финансовых средств аналитическая машина Бэббиджа так и не увидела свет. Тем не менее, ее конструкция стала впоследствии прообразом современных компьютеров.

Кроме этого, перфокарты использовались в табуляторе, разработанном в 1890 году Германом Холлеритом. Табулятор являлся механизмом для обработки статистических данных и использовался на благо Бюро переписи населения США. Кстати, созданная Холлеритом компания Tabulating Machine Company в конечном итоге была переименована в International Business Machines (IBM). На протяжении нескольких десятков лет IBM развивала и продвигала технологию перфокарт. В середине XX века они использовались повсеместно, получив особенно широкое распространение в компьютерной технике и различных станках. Закат эпохи перфокарт пришелся на 1980-е годы, когда на смену им пришли более совершенные магнитные носители информации. Интересно, что отдел исследования перфокарт компании IBM существовал вплоть до 2000-х годов. Например, в 2002 году в IBM изучали создание перфокарты размером с почтовую марку, которая могла бы содержать до 25 миллионов страниц информации.

Магнитные диски

Несмотря на то, что перфокарты отличались простотой изготовления, они обладали и целым рядом довольно существенных недостатков. Во-первых, это небольшая емкость. Стандартная перфокарта вмещала в себе около 80 символов, что соответствовало 100 байтам информации. Это очень мало. Судите сами: для хранения одного мегабайта данных потребовалось бы свыше десяти тысяч таких перфокарт. Во-вторых, это низкая скорость чтения и записи. Даже самые совершенные считывающие устройства могли обрабатывать не более одной тысячи перфокарт в минуту. То есть за секунду они считывали лишь 1,6 Кбайт данных. Ну и в-третьих, это невысокая надежность и невозможность повторной записи. Конечно, понятие «надежность» не совсем корректно использовать по отношению к перфокартам. Однако, согласитесь, повредить изготовленную из тонкого картона пластину не составляет никакого труда. Вдобавок к этому делать отверстия в картах нужно было очень аккуратно и внимательно: одна лишняя «дырка» — и перфокарта приходила в негодность, а хранящаяся на ней информация безвозвратно пропадала.

К хранению данных требовался новый подход. И в середине XX века были созданы первые магнитные носители информации. Эпоху данного типа накопителей открыла магнитная пленка, разработанная немецким инженером Фрицем Пфлюмером. Патент на это устройство был выдан еще в 1928 году, но немецкие власти так долго «скрывали» технологию внутри страны, что за пределами державы о ней стало известно лишь после окончания Второй мировой войны. Магнитная пленка изготавливалась из тонкого слоя бумаги, на который напылялся порошок оксида железа. При записи информации пленка попадала под воздействие магнитного поля, и на поверхности ленты сохранялась определенная намагниченность. Это свойство затем и использовали считывающие устройства.

Читайте также:  Голубь нб вакцина способ применения дозировка

Магнитная лента использовалась в компьютере UNIVAC-I

Впервые магнитная лента была применена в коммерческом компьютере UNIVAC-I, выпущенном в 1951 году. Кстати, его первый экземпляр попал в то же самое Бюро переписи населения США. Магнитная пленка, используемая в UNIVAC-I, была намного более емкой, нежели перфокарты. Ее объем равнялся емкости десяти тысяч перфокарт, то есть он составлял примерно 1 Мбайт.

Развитие технологии магнитных лент продолжалось до 1980-х годов. В течение этого времени подобные накопители использовались в основном в мейнфреймах и мини-компьютерах. Ну а с 80-х годов магнитная лента использовалась лишь для резервного хранения данных. Этому способствовало то, что ленточные картриджи оставались надежным и очень дешевым носителем информации. Но даже несмотря на эти преимущества, к концу 2000-х годов специалисты предрекали конец эпохи магнитных лент — цены на жесткие диски продолжали падать. Вдобавок они предлагали высокую плотность записи. Начиная с 2008 года, рынок ленточных накопителей уменьшался примерно на 14% в год, и даже ярые сторонники технологии признавали, что у нее нет шансов на выживание. Однако ситуация резко изменилась в 2011 году. В Таиланде произошло наводнение, продолжавшееся, по официальным данным, 175 дней. В результате наводнения было затоплено несколько индустриальных зон, где были расположены заводы по производству жестких дисков таких компаний, как Seagate, Western Digital и Toshiba. Как итог, цены на продукцию возросли на 60%, а объемы производства упали. Так магнитная лента получила вторую жизнь.

Магнитная лента IBM

Стоит отметить, что ленточные накопители, как правило, используются в тех сферах, где необходимо хранить очень большое количество информации. Например, в каких-либо крупных исследованиях. Так, магнитную ленту используют для записи результатов исследований на Большом адронном коллайдере. О преимуществах технологии в свое время рассказывал Альберто Пейс (Alberto Pace) — глава подразделения обработки и хранения данных CERN. Он отметил, что магнитная лента имеет четыре основных преимущества над жесткими дисками. Прежде всего, это скорость. Несмотря на то, что специализированному роботу требуется до 40 секунд, чтобы выбрать нужную кассету и вставить ее в считыватель, чтение данных из ленты происходит в четыре раза быстрее, чем с жесткого диска. Еще одним преимуществом магнитной ленты, по словам Пейса, является ее надежность. Если она рвётся, то ее можно легко склеить. В этом случае теряется лишь несколько сотен мегабайт данных. Когда выходит из строя жесткий диск, теряются абсолютно все данные. Глава подразделения CERN привел некоторые статистические данные, касающиеся надежности устройств. Так, в среднем за год в CERN из 100 петабайт данных, хранящихся на магнитных лентах, теряется лишь несколько сотен мегабайт. На жестких дисках располагается около 50 петабайт информации, и каждый год организация теряет до нескольких сотен терабайт в результате неисправностей HDD. Третьим преимуществом магнитной ленты является ее энергоэффективность, а точнее, экономичность. Сами ленты хранятся в неактивном состоянии, следовательно, они не потребляют энергию. Наконец, четвертое — это безопасность. Если злоумышленники получат доступ к жестким дискам, то они смогут уничтожить всю информацию за считанные минуты. В случае с магнитными лентами на это может уйти не один год.

Хранилище магнитных лент в CERN

Еще на два преимущества ленточных накопителей указал Эвангелос Элефтеро — руководитель отдела технологий хранения данных исследовательской лаборатории IBM в Цюрихе. Он отметил, что магнитные ленты все еще дешевле, чем жесткие диски. 1 Гбайт HDD стоит примерно 10 центов, тогда как стоимость аналогичной емкости магнитной ленты оценивается в 4 цента. Также Элефтеро обратил внимание на долговечность лент. Такой накопитель будет служить верой и правдой даже через 30 лет, в то время как рабочий цикл жесткого диска составляет всего 5 лет.

Тем не менее, стоит понимать, что магнитные ленты уже никогда не будут использоваться как единственная система хранения данных. Они занимают важное место в иерархической структуре хранения информации, но не являются (и не будут) ее основным звеном.

Дискеты

Следующей ступенью развития магнитных носителей информации стала дискета, которая была представлена в 1971 году. Над созданием девайса трудилась компания IBM. В 1967 году у «голубого гиганта» появилась необходимость рассылать клиентам обновления софта, и команда инженеров под руководством Алана Шугарта предложила идею компактного и быстрого гибкого диска. Спустя несколько лет в стенах IBM была создана 8-дюймовая дискета объемом 80 Кбайт с возможностью одноразовой записи. Решение получилось не очень удачным, поскольку притягивало много пыли и было чересчур хрупким для карманного девайса. Поэтому разработчики решили упаковать гибкий диск в защитный пластиковый кожух с тканевой прокладкой.

По своей конструкции дискета представляла собой диск из полимерных материалов, на который наносилось магнитное покрытие. Пластиковый кожух имел несколько отверстий. Центральное предназначалось для шпинделя дисковода, малое отверстие являлось индексным, то есть позволяло определить начало сектора. Наконец, через прямоугольное отверстие с закругленными углами магнитные головки дисковода работали непосредственно с диском.

Источник

uCrazy.ru

ЛУЧШЕЕ ЗА НЕДЕЛЮ

ОПРОС

СЕЙЧАС НА САЙТЕ

КАЛЕНДАРЬ

Сегодня день рождения

Рекомендуем

История хранения информации

Чтобы понять, насколько сильно человек в информационном плане продвинулся и, благодаря этому, эволюционировал, достаточно вспомнить о бумаге. Вы представляете себе цивилизацию без бумаги и книг? Глиняные таблички, рулоны папируса, деревянные страницы. Согласитесь, не очень удобно учиться, когда учебник весит пару центнеров и размером с гостиную? Это был бы полный epic fail человечества. Мы бы сейчас не сидели с вами в Интернете, а копили бы деньги на третью в своей жизни книжку. И начало той электронно-информационной революции, в эпицентре которой мы сейчас находимся, никогда бы не состоялось. Ведь всё начиналось с бумаги.

Бумажная лента, перфорированная. Начало.

Эра компьютеров началась гораздо раньше, чем думает большинство хомяков. Конечно, в нём не было микропроцессора, видеокарты для Contra Strike и веб-камеры для болтовни по «Скайпу». В привычном понимании компьютера сегодня, это были вовсе и не компьютеры, а огромные тугодумающие монстры, выполняющие ничтожно малое количество расчетов при помощи старой доброй бумаги. Вернее, бумажной лены, намотанной на бобины. Информация на оной хранилась в виде аккуратных дырочек. Ранние машины по типу Colossus Mark I (1944 год выпуска) работали с данными в ручном режиме. Бумажные перфорированные ленты вводились как бумага в принтер в реальном времени. Однако, уже более поздние монстро-компьютеры умели считывать программы с ленты, к примеру, Manchester Mark I (1949 г.в.), считывали код с ленты и загружали его в примитивное подобие электронной памяти. Перфорированная лента использовалась для записи и чтения данных свыше тридцати лет. Это было начало новой эры — информационного расцвета человечества.

История перфокарт уходит корнями в самое начало XIX века, когда они использовались для управления ткацкими станками. В 1890 году Герман Холлерит применил перфокарту для обработки данных переписи населения в США. Именно он нашел компанию (будущую IBM), которая использовала такие карты в своих счетных машинах. В 1950-х годах IBM уже вовсю использовала в своих компьютерах перфокарты для хранения и ввода данных, а вскоре этот носитель стали применять и другие производители. Тогда были распространены 80-столбцовые карты, в которых для одного символа отводился отдельный столбец. Кто-то может удивиться, но в 2002 году IBM все еще продолжала разработки в области технологии перфокарт. Правда, в XXI веке компанию интересовали карточки размером с почтовую марку, способные хранить до 25 миллионов страниц информации.

Вместе с выходом первого американского коммерческого компьютера UNIVAC I (1951) в IT-индустрии началась эра магнитной пленки. Первопроходцем, как водится, снова стала IBM, потом «подтянулись» другие. Магнитная лента наматывалась открытым способом на катушки и представляла собой очень тонкую полосу пластика, покрытого магниточувствительным веществом. Машины записывали и считывали данные при помощи специальных магнитных головок, встроенных в привод бобин. Магнитная лента широко использовалась во многих моделях компьютеров (особенно мейнфреймах и мини-компьютерах) вплоть до 1980-х, пока не изобрели ленточные картриджи.

Первые съемные диски

В 1963 году IBM представила первый винчестер со съемным диском – IBM 1311. Он представлял собой набор взаимозаменяемых дисков. Каждый набор состоял из шести дисков диаметром 14 дюймов, вмещавших до 2 Мб информации. В 1970-х многие винчестеры, к примеру, DEC RK05, поддерживали такие дисковые наборы, особенно часто их использовали производители миникомпьютеров для продажи программного обеспечения.

В 1960-х производители компьютерного железа научились помещать рулоны магнитной ленты в миниатюрные пластиковые картриджи. От своих предшественниц, бобин, они отличались большим сроком жизни, портативностью и удобством. Наибольшее распространение они получили в 1970-е и 1980-е. Как и бобины, картриджи оказались очень гибкими носителями: если нужно было записать очень много информации, в картридж просто помещалось больше ленты. Сегодня ленточные картриджи типа 800-гигабайтного LTO Ultrium используются для масштабной поддержки серверов, хотя в последние годы их популярность упала ввиду большего удобства переноса данных с винчестера на винчестер.

Печать на бумаге

В 1970-х благодаря относительно низкой стоимости популярность набирают персональные компьютеры. Однако существовавшие способы хранения данных многим оказались не по карману. Один из первых ПК, MITS Altair поставлялся и вовсе без носителей для записи информации. Пользователям предлагалось вводить программы при помощи специальных тумблеров на передней панели. Тогда, на заре развития «персоналок», пользователям нередко приходилось в буквальном смысле вставлять в компьютер листки с написанными от руки программами. Позднее программы стали распространяться в печатном виде через бумажные журналы.

В 1971 году на свете появилась первая дискета IBM. Она представляла собой покрытый магнитным веществом 8-дюймовый гибкий диск, помещенный в пластиковый корпус. Пользователи быстро поняли, что для загрузки данных в компьютер «флоппи-диски» быстрее, дешевле и компактнее, чем стопки перфокарт. В 1976 году один из создателей первой дискеты, Алан Шугарт, предложил ее новый формат – 5,25-дюймов. В таком размер просуществовала до конца 1980-х, пока не появились 3.5-дюймовые дискеты Sony.

Компакт-кассета была изобретена компанией Philips, которая догадалась помесить две небольшие катушки магнитной пленки в пластиковый корпус. Именно в таком формате в 1960-х годах делались аудиозаписи. HP использовала такие кассеты в своем десктопе HP 9830 (1972), но по началу такие кассеты в качестве носителей цифровой информации особой популярностью не пользовались. Потом искатели недорогих носителей данных все же обернули свой взор в сторону кассет, которые с их легкой руки оставались востребованными до начала 1980-х. данные на них, кстати, можно было загружать с обычного аудиоплеера.

ROM-картридж – это плата, состоящая из постоянного запоминающего устройства (ROM) и коннектора, помещенных в твердую оболочку. Область применения картриджей – компьютерные игры и программы. Так, в 1976 году компания Fairchild выпустила ROM-картридж для записи ПО под видеоприставку Fairchild Channel F. Вскоре под использование ROM- картриджей были адаптированы и домашние компьютеры типа Atari 800 (1979) или TI-99/4 (1979). ROM-картриджи были просты в использовании, но относительно дороги, из-за чего, собственно, и «умерли».

Великие эксперименты с дискетами

В 1980-х многие компании попробовали создать альтернативу дискете размером 3,5 дюйма. Одно такое изобретение (на фото вверху в центре) трудно назвать дискетой даже с натяжкой: картридж ZX Microdrive состоял из огромного мотка магнитной ленты, по принципу восьмидорожковой кассеты. Другой экспериментатор, Apple, создал дискету FileWare (справа), которая поставлялась вместе с первым компьютером Apple Lisa – худшим девайсом в истории компании по версии Network World, a также 3-дюймовый Compact Disk (внизу слева) и редкую сейчас 2-дюймовую дискету LT-1 (вверху слева), использовавшуюся исключительно в ноутбуке Zenith Minisport 1989 года выпуска. Остальные эксперименты завершились созданием продуктов, которые стали нишевыми и не смогли повторить успех своих 5,25-дюймовой и 3,5-дюймовой предшественниц.

Компакт-диск, изначально использовавшийся как носитель цифровой аудиоинформации, обязан своим рождением совместному проекту Sony и Philips и впервые появился на рынке в 1982 году. Цифровые данные хранятся на этом пластиковом носителе в виде микроуглублений на его зеркальной поверхности, а считывается информация при помощи лазерной головки. Оказалось, что цифровые CD как нельзя лучше подходят для хранения компьютерных данных, и вскоре те же Sony и Philips доработали новинку. Так в 1985 году мир узнал о CD-ROMах. На протяжении последующих 25 лет оптический диск претерпел массу изменений, его эволюционная цепочка включает DVD, HD-DVD и Blu-ray. Значимой вехой было появление в 1988 году CD-Recordable (CD-R), позволившего пользователям самостоятельно записывать данные на диск. В конце 1990-х оптические диски, наконец, подешевели, и окончательно отодвинули дискеты на задний план.

Как и компакт-диски, магнитооптические диски «читает» лазер. Однако в отличие от обычных CD и CD-R большинство магнитооптических носителей позволяют многократно наносить и стирать данные. Это достигается посредством взаимодействия магнитного процесса и лазера при записи данных. Первый магнитооптический диск входил в комплект компьютера NeXT (1988 год, фото справа внизу), а емкость его составляла 256 Мб. Самый известный носитель этого типа – аудиодиск MiniDisc Sony (вверху в центре, 1992 год). Был у него и «собрат» для хранения цифровых данных, который назывался MD-DATA (слева вверху). Магнитооптические диски производятся до сих пор, однако из-за малой емкости и относительно высокой стоимости они перешли в разряд нишевых продуктов.

Iomega и Zip Drive

Iomega заявила о себе на рынке носителей информации в 1980-х, выпустив картриджи с магнитными дисками Bernoulli Box, емкостью от 10 до 20 Мб. Более поздняя интерпретация этой технологии воплотилась в так называемом носителе Zip (1994 год), который вмещал до 100 Мб информации на недорогой 3,5-дюймовом диске. Формат пришелся по душе демократичной ценой и хорошей емкостью, и диски Zip оставались на гребне популярности до конца 1990-х. Однако на уже появившиеся в то время CD-R можно было записать до 650 Мб, и когда их цена снизилась до нескольких центов за штуку, продажи Zip-дисков катастрофически упали. Iomega сделала попытку спасти технологию и разработала диски размером 250 и 750 Мб, однако CD-R к тому времени уже окончательно завоевали рынок. Так Zip стал историей.

Первую супердискету выпустила компания Insight Peripherals в 1992 году. На 3,5-дюймовом диске вмещалось 21 Мб информации. В отличие от других носителей, этот формат был совместим с более ранними традиционными приводами для 3,5-дюймовых дискет. Секрет высокой эффективности таких накопителей крылся в сочетании гибкого диска и оптики, то есть данные записывались в магнитной среде при помощи лазерной головки, при этом обеспечивалась более точная запись и больше дорожек, соответственно, больше места. В конце 1990-х появились два новых формата – Imation LS-120 SuperDisk (120 Мб, справа внизу) и Sony HiFD (150 Мб, справа вверху). Новинки стали серьезными конкурентами Iomega Zip drive, однако в конечном итоге всех победил формат CD-R.

Бардак в мире портативных носителей

Громкий успех Zip Drive в середине 1990-х породил массу подобных устройств, производители которых надеялись отхватить кусок рынка у Zip. Среди основных конкурентов Iomega можно отметить SyQuest, который сначала раздробил собственный сегмент рынка, а потом погубил свою продуктовую линейку чрезмерным разнообразием – SyJet, SparQ, EZFlyer и EZ135. Еще один серьезный, но «мутный» соперник – Castlewood Orb, придумавший диск наподобие Zip емкостью 2,2 Гб. Наконец, сама компания Iomega сделала попытку дополнить диск Zip другими типами съемных носителей – от больших съемных винчестеров (1- и 2-гигабайтные Jaz Drive) до миниатюрного Clik drive на 40 Мб. Но ни один не достиг высот Zip.

В начале 1980-х Toshiba придумала флеш-память NAND, однако технология стала популярной только спустя десятилетие, вслед за появлением цифровых камер и PDA. В это время она начинает реализовываться в разных формах – от больших кредитных карт (предназначенных для использования в ранних наладонниках) до карточек CompactFlash, SmartMedia, Secure Digital, Memory Stick и xD Picture Card. Карты флеш-памяти удобны, прежде всего, тем, что в них нет подвижных частей. Кроме этого, они экономичны, прочны и относительно недороги при постоянно увеличивающемся объеме памяти. Первые карточки CF вмещали 2 Мб, сейчас же их емкость достигает 128 Гб.

На промослайде IBM/Hitachi изображен крошечный винчестер Microdrive. Появился он в 2003 году и на какое-то время завоевал сердца компьютерных пользователей. Дебютировавший в 2001 году iPod и другие медиа-плееры оснащены похожими устройствами на базе вращающегося диска, однако производители быстро разочаровались в таком накопителе: слишком уж он хрупок, энергоемок и мал по объему. Так что этот формат уже почти «похоронен».

Пришествие USB. Viva, informacio!

В 1998 году началась эпоха USB. Неоспоримое удобство USB-девайсов сделало их практически неотъемлемой частью жизни всех ПК-пользователей. С годами они уменьшаются в физических размерах, но становятся все более емкими и дешевыми. Особенно популярны появившиеся в 2000 году «флешки», или USB thumb drives (от англ. thumb – «большой палец»), названные так за свой размер – с человечески палец. Благодаря большой емкости и маленькому размеру USB-накопители стали, пожалуй, самым лучшим носителем информации, придуманных человечеством.

Источник

Читайте также:  Законные способы отказа от вакцинации ковид
Оцените статью
Разные способы
Пн Вт Ср Чт Пт Сб Вс
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30