Частотный способ кодирования информации

9.Кодирование информации в нервной системе.

Вся информация или значительная ее часть, передаваемая от одного отдела нервной системы к другому, заключена в пространственном и временном распределении импульсных потоков. Передача информации от одного нейрона к другому производится с помощью различных нейронных кодов.

Кодирование – это процесс преобразования информации в условную форму (код), удобную для передачи по каналу связи. Любое преобразование информации в отделах нервной системы является кодированием.

Так, в слуховом анализаторе механическое колебание перепонки и других звукопроводящих элементов на первом этапе преобразуется в рецепторный потенциал, который обеспечивает выделение медиатора в синаптическую щель и возникновение генераторного потенциала. В результате этих процессов в афферентном волокне возникает нервный импульс. ПД достигает следующего нейрона, в синапсе которого электрический сигнал снова превращается в химический, и, таким образом, многократно меняется код. Следует отметить, что на всех уровнях анализатора стимул не восстанавливается в его первоначальной форме. Этим физиологическое кодирование отличается от технического кодирования, где первичное сообщение восстанавливается в своем первоначальном виде.

Универсальным кодом нервной системы является нервный импульс, который распространяется по нервным волокнам. Передача сигнала от одной клетки к другой осуществляется с помощью химического кода – медиатора. Для хранения информации в ЦНС кодирование осуществляется с помощью биохимических процессов и структурных изменений в нейронах.

Одним из простых способов кодирования информации признается специфичность рецепторов, избирательно реагирующих на определенные параметры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др. Другой способ передачи информации получил название частотного кода. Наиболее явно он связан с кодированием интенсивности раздражения. Частотный способ кодирования информации об интенсивности стимула, включающего операцию логарифмирования, согласуется с психофизическим законом Г. Фехнера о том, что величина ощущения пропорциональна логарифму интенсивности раздражителя. Однако позже закон Фехнера был подвергнут серьезной критике. С. Стивене на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимости. Анализ передачи сигнала о вибрации от соматических рецепторов показал, что информация о частоте вибрации передается с помощью частоты, а ее интенсивность кодируется числом одновременно активных рецепторов. В качестве альтернативного механизма к первым двум принципам кодирования — меченой линии и частотного кода — рассматривают также паттерн ответа нейрона. Устойчивость временного паттерна ответа — отличительная черта нейронов специфической системы мозга. Система передачи информации о стимулах с помощью рисунка разрядов нейрона имеет ряд ограничений. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно зависит от состояния нейрона, что делает данную систему кодирования недостаточно надежной. Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Вырабатывая условные рефлексы на раздражение разных участков кожи лапы через «касалки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуждения в определенном локусе соматосенсорной коры. Пространственное соответствие места приложения стимула и локуса возбуждения в коре получило подтверждение и в других анализаторах: зрительном, слуховом. Тонотопическая проекция в слуховой коре отражает пространственное расположение волосковых клеток кортиевого органа, избирательно чувствительных к различной частоте звуковых колебаний. Такого рода проекции можно объяснить тем, что рецепторная поверхность отображается на карте коры посредством множества параллельных каналов — линий, имеющих свои номера.

Основная масса процесса кодирования происходит в сенсорных системах. В кодировании характеристик раздражителя принимают участие все отделы анализатора. К числу кодируемых характеристик относят силу раздражителя, вид раздражителя (качественная характеристика), время его действия, пространство, в котором находится раздражитель, а также место его действия на организм. Весь процесс кодирования можно разделить в соответствии с отделами анализатора на несколько этапов.

Источник

КОДИРОВАНИЕ ИНФОРМАЦИИ В НЕРВНОЙ СИСТЕМЕ

Вся информация, передаваемая в нервной системе, заключена в пространственном и временном распределении импульсных потоков.

Передача информации от одного нейрона к другому производит­ся с помощью различных нейронных кодов.

Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму — код В сенсор­ной системе сигналы кодируются двоичным кодом, т.е. наличием или отсутствием электрического импульса в тот или иной момент време­ни. Такой способ кодирования крайне прост и устойчив к помехам. Информация о раздражении и его параметрах передастся в виде отдельных импульсов, а также групп или «пачек» импульсов. Амплитуда, длительность и форма каждого импульса одинаковы, но количество импульсов в пачке, частота их следования, длительность пачек и ин­тервалов между ними, а также временной «рисунок» (паттерн) пачки различны и зависят от характеристик стимула.

Читайте также:  Способ закаливания обливание холодной водой

КОДИРОВАНИЕ ИНФОРМАЦИИ В НЕЙРОННОЙ ЦЕПИ

Импульсное: непрерывное, пачечное, частотное, интервальное, длительностью активности, ва­риабельностью активности

Неимпульсное: состав и скорость тока аксо-плазмы

Сенсорная информация кодируется также числом одновременно возбужденных нейронов и их расположением в нейронном слое.

Важной особенностью кодирования в этих системах является множественность и перекрытие кодов. Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система использует несколько кодов: частоту и число импульсов в пачке, чис­ло возбужденных нейронов и их локализацию в слое. В коре одним из основных используемых способов становится позиционное кодиро­вание. Оно заключается в том, что какой-то признак раздражителя вызывает возбуждение определенного нейрона или небольшой груп­пы нейронов, расположенных в определенном месте нейронного слоя. Например, возбуждение небольшой локальной группы нейро­нов зрительной коры означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации. Возбуждение определенных нейронов височной коры сигнализирует о появлении в поле зрения знакомого лица. Для периферических от­делов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход к преимуще­ственно пространственному (в основном, позиционному) коду.

СЛЕДОВЫЕ ПРОЦЕССЫ

Следовые процессы — это последействие раздражителя, которое длится в различных нервных центрах неодинаковое время: небольшое (сек. — мин.) в спинном мозгу, значительно большее (часы и дни) в центрах г/м и очень значительное (десятки лет) в КПБ. Эти следовые процессы лежат в основе памяти. Предположительно, длительное сохранение в нейроне следов предшествующего раздражителя основано на изменении структуры белков клетки, а возможно и белков глии.

В соответствии с биохимической теорией памяти Хигена, в про­цессе запоминания происходят структурные преобразования в моле­кулах РНК, от которых зависит образование белков клетки. В резуль­тате этого, в нейроне начинают синтезироваться «измененные» белки с отпечатками прежних раздражений, составляющие биохимическую основу памяти. Эксперименты с крысами показали, что способность запоминать следы прежних раздражений, т.е. способность к обуче­нию, коррелирует с содержанием РНК в нервной ткани. Второй при­мер: «не обученные» черви реагировали на включение света двига­тельной реакцией после того, как им вводили РНК обученных червей. Следовательно, приобретенный опыт может передаваться от одного организма к другому с химическими веществми.

Те же закономерности установлены при формировании новых двигательных навыков. Обнаружено увеличенное содержание РНК в определенных нервных центрах. Такие изменения, например, в мото­нейронах, могут составлять основу так называемой двигательной па­мяти (оценки направлений, углов и усилий). Мышечная память по­зволяет человеку вспомнить заученные в процессе тренировки дви;ения, которые он забыл после длительного перерыва.

Непродолжительные последействия (до 1 часа) лежат в основе кратковременной памяти, а биохимические преобразования в нерв­ных клетках составляют базис долговременной памяти.

Схема механизмов пространственной суммации возбуждения

Схема механизмов временной суммации возбуждения

Источник

5. Кодирование информации

Кодирование информации в нервной системе

Кодирование информации — это одна из важнейших теоретических тем в физиологии, которую необходимо знать для понимания реальной работы нервной системы.

Определение

Кодирование — это перевод характеристик внешнего раздражения во внутренние нервные коды, доступные для обработки и анализа нервной системой, т.е. в нервные импульсы и другиме материальные носители информации в нервной системе .

Кодирование — необходимый этап Восприятия.

Перевести внешние характеристики раздражения во внутренние коды нервной системы, с которыми она может работать.

Для этого надо отразить в характеристиках потока возбуждения важные для организма характеристики раздражения.

Нервный импульс имеет стандартную, всегда одинаковую, амплитуду потенциала действия: он не может быть ни больше, ни меньше по силе. Невозможно передать по нервному волокну, например, половинку импульса или четверть импульса. Как же он тогда передаст информацию о разной силе раздражителя? Проблема решается с помощью частотного или пространственного кода.

Основных видов кодирования два: частотное и пространственное. Иногда их объединяют и получается частотно-пространственное кодирование.

Частотное кодирование информации

Частотное кодирование: чем сильнее раздражитель, тем чаще будут идти порождаемые им импульсы.

Пример потоков нервных импульсов:

Слабый раздражитель: | _ | |_ | _ | _ |

Заметили разницу? Сильный раздражитель можно отличить от слабого по тому, что импульсы от рецептора при сильном раздражении идут чаще, чем при слабом раздражении. Это и называется частотным кодированием информации в нервной системе.

Рецептор преобразует силу раздражителя в потоки импульсов, отличающиеся по частоте в зависимости от силы раздражения – это и называется частотный код.

Пространственное кодирование информации

Пространственное кодирование заключается в том, что на определенные характеристики раздражения реагирую не все, а только определенные рецепторы. Возбуждение доставляется адресно в строго определенную нервную структуру для анализа.

Определенные параметры раздражителя, которые умеет снимать рецептор, он превращает в пропорциональное локальное электрохимическое возбуждение (рецепторный потенциал), а затем — в поток нервных импульсов определенной частоты и пространственной организации.

Читайте также:  Забастовка как способ защиты трудовых прав работников

Таким образом, параметры раздражителя должны передаваться параметрами электрохимической импульсации, идущей от рецепторов.

Закономерности кодирования (виды кодов)

Соответствие по частоте: частота импульсов, порождаемых рецепторами, пропорциональна силе раздражителя . Чем больше сила раздражителя, тем больше частота импульсов, идущих от рецепторов. Образно можно сказать так: «Сила — в частоте!» По крайней мере, именно так считает наша нервная система.

Соответствие номеру канала: определенному рецептору соответствует определенный адрес в сенсорной проекционной зоне коры больших полушарий головного мозга.

Топическое соответствие: взаиморасположение частей раздражителя соответствует взаиморасположению нейронов, из которых строится его нервная модель. Например, соответствуют друг другу: участок поля зрения – участок сетчатки с рецепторами – участок в релейной структуре (низшем нервном центре) – участок в зрительной проекционной зоне коры. Таким образом, каждый участок проекционной зоны имеет свое рецептивное поле, отличающееся от других участков.

Соответствие по количеству: чем сильнее раздражитель, тем больше число возбуждающихся рецепторов.

Соответствие по длительности: чем сильнее раздражитель, тем дольше продолжается импульсация рецептора.

Соответствие по латентному периоду импульсации: сильный раздражитель уменьшает латентный период.

Детекция: нейрон-детектор возбуждается при раздражении своего рецептивного поля определенной конфигурации и не реагирует на отличающиеся рецептивного поля, т.е. на поля другой конфигурации.

Соответствие по паттерну (узору импульсов): характеристики раздражителя отражаются в узоре импульсации.

Источник

ПРИНЦИПЫ КОДИРОВАНИЯ ИНФОРМАЦИИ В НЕРВНОЙ СИСТЕМЕ

Интенсивное изучение активности нейронов мозга у неанесте­зированных животных, начавшееся в 50-х годах, неизбежно по­ставило вопрос о способах кодирования нейронами информации о внешнем мире. Сегодня можно говорить о нескольких принципах кодирования в нейронных сетях. Одни из них достаточно просты и характерны для периферического уровня обработки информации, другие — более сложны и характеризуют передачу информации на более высоких уровнях нервной системы, включая кору, В процессе эволюции принципы кодирования более высокого уровня начина­ют преобладать над более примитивными.

Одним из простых способов кодирования информации при­знается специфичность рецепторов, избирательно реагирующих на определенные параметры стимуляции, например колбочки с раз­ной чувствительностью к длинам волн видимого спектра, рецеп­торы давления, болевые, тактильные и др. Вработах Т. Буллока (1965) и В. Маунткастла (1967) принцип специфичности получил дальнейшее развитие. Они предложили говорить о меченой линии как о моносинаптической передаче сигналов от рецептора к неко­торому центральному нейрону, возбуждение которого соответствует выделению определенного качества стимула (СомьенДж., 1975).

Для каждой модальности эволюция нашла свое более адекватное решение проблемы передачи информации.Так, модель меченой ли­нии более подходит к чувствительным окончаниямкожи, которые

высокоспецифичны относительно небольшого количества типов раз­дражений (рецепторы давления, прикосновения, температуры, боли). Это соответственно требует малого числа меченых линий.

Другой способ передачи информации получил название час­тотного кода. Наиболее явно он связан с кодированием интенсив­ности раздражения. Для многих периферических нервных волокон была установлена логарифмическая зависимость между интенсив­ностью раздражителя и частотой вызываемых имПД. Она выявле­на для частоты импульсов в одиночном волокне зрительного не­рва, идущего от одного омматидия мечехвоста (Ити1и5), и интен­сивности света; для частоты спайков веретена — рецептора мышцы лягушки и величины нагрузки на мышцу. Частотный способ коди­рования информации об интенсивности стимула, включающего операцию логарифмирования, согласуется с психофизическим за­коном Г. Фехнера о том, что величина ощущения пропорциональна логарифму интенсивности раздражителя.

Однако позже законФехнера был подвергнут серьезной кри­тике. С. Стивене на основании своих психофизических исследова­ний, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предло­жил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимости.

Закон степенной функции получил сильную эмпирическую поддержку при изучении электрической активности многих сен­сорных элементов. Так, частота ПД ганглиозных клеток сетчатки лягушки, реагирующих на скорость движения, находится в сте­пенной зависимости от угловой скорости стимула. Степенной фун­кции подчиняются отношения между частотой импульсации, иду­щей от медленно адаптирующихся кожных рецепторов, и силой надавливания. В то же время в других опытах получены данные, не соответствующие ни логарифмической, ни степенной зависимос­ти. В слуховых и вкусовых сенсорных волокнах зависимость частоты импульсов от интенсивности описывается 5-образной функцией.

Пытаясь примирить 5-образные зависимости, небольшое чис­ло твердо установленных логарифмических функций смассой фак­тов, подтверждающих закон степенной зависимости Стивенса, исследователи высказывают предположение, что степенные зави­симости между стимулом и реакцией возникают на более высоких уровнях сенсорных систем, сменяя другие типы отношений, пред­ставленные на периферии (ТамарГ., 1976).

Другое объяснение связано с уточнением роли числа нервных волокон в передаче информации с помощью частотного кода.

Анализ передачи сигнала о вибрации от соматических рецеп­торов показал, что информация о частоте вибрации передается с помощью частоты ПД, а ее интенсивность кодируется числом од­новременно активных рецепторов. По мнению Р. Гранита (1957), число активированных волокон является важным фактором в ме­ханизме интерпретации частотного кода. Он полагает, что интен­сивность не может быть передана с помощью только одной часто­ты импульсов. Необходимо учитывать не отдельную единицу, а скорее активность статистических комплексов. Поэтому, несмотря на значительное взаимодействие в сетчатке и последующую транс­формацию сигналов на более высоких уровнях нервной системы, информация об интенсивности может кодироваться частотным кодом, но только на статистической основе, через группу одно­временно возбужденных волокон.

Читайте также:  Способ утилизации отходов по классификации

В качестве альтернативногомеханизма к первым двум принци­пам кодирования — меченой линии и частотного кода — рассмат­ривают также паттерн ответа нейрона (структурнуюорганиза­цию ПД во времени). Устойчивость временного паттернаответа — отличительная черта нейронов специфической системы мозга. Система передачи информации о стимулах спомощью рисункаразрядов нейрона имеет ряд ограничений.В нейронных сетях, ра­ботающих по этому коду, не может соблюдаться принцип эконо­мии,так какон требует дополнительных операцийи времени по учету начала, конца реакции нейрона, определенияее длительно­сти. Кроме того, эффективность передачи информации о сигнале существенно зависит от состояния нейрона, что делаетданнуюсистему кодирования недостаточно надежной.

На роль ансамбля нейронов в кодировании информации ука­зал Д. Хебб. Он считает, что ни один нейрон не может пересылать никакой информации другим нейронам и что она передается ис­ключительно через возбуждение группы нейронов, входящих в состав соответствующих ансамблей. Д. Хебб предложил рассматри­вать ансамбль нейронов в качестве основного способа кодирования и передачи информации. Различные наборы возбужденных нейронов одного и того же ансамбля соответствуют разным параметрам сти­мула, а если ансамбль находится на выходе системы, управляю­щей движением, — то и разным реакциям. Данный способ коди­рования имеет ряд преимуществ. Он более надежен, так как не зависит от состояния одного нейрона. К тому же не требует допол­нительно ни операций, ни времени. Однако для кодирования каж­дого типа стимулов необходим свой уникальный набор нейронов.

Особый принципобработки информации вытекаетиз детек­торнойтеории. Он получил название принципа кодирования информа-

ции номером детектора (детекторного канала>. Передача информа­ции по номеру канала (термин предложен Е.Н. Соколовым) озна­чает, что сигнал следует по цепочке нейронов, конечное звено которой представлено нейроном-детектором простых или слож­ных признаков, избирательно реагирующим на определенный физи­ческий признак или их комплекс.

Идея о том, что информация кодируется номером канала, при­сутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Вырабатывая условные рефлексы на раздражение разных участков кожи лапы через «касалки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуждения в опре­деленном локусе соматосенсорной коры. Пространственное соот­ветствие места приложения стимула и локуса возбуждения в коре получило подтверждение и в других анализаторах: зрительном, слуховом. Тонотопическая проекция в слуховой коре отражает про­странственное расположение волосковых клеток кортиевого орга­на, избирательно чувствительных к различной частоте звуковых колебаний. Такого рода проекции можно объяснить тем, что ре-цепторная поверхность отображается на карте коры посредством множества параллельных каналов — линий, имеющих свои номе­ра. При смещении сигнала относительно рецепторной поверхнос­ти максимум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избира­тельно отвечающий на раздражение определенного участка рецеп­торной поверхности. Детекторы локальности, обладающие точеч­ными рецептивными полями и избирательно реагирующие на при­косновение к определенной точке кожи, являются наиболее простыми детекторами. Совокупность детекторов локальности об­разует карту кожной поверхности в коре. Детекторы работают па­раллельно, каждая точка кожной поверхности представлена неза­висимым детектором.

Сходный механизм передачи сигнала о стимулах действует и тогда, когда стимулы различаются не местом приложения, а дру­гими признаками. Появление локуса возбуждения на детекторной карте зависит от параметров стимула. С их изменением локус воз­буждения на карте смешается. Для объяснения организации ней­ронной сети, работающей как детекторная система,Е.Н. Соколов предложил механизм векторного кодирования сигнала.

Принцип векторного кодирования информации впервые был сформулирован в 50-х годах шведским ученым Г. Йохансоном, ко­торый и положил начало новому направлению в психологии — векторной психологии. Г. Йохансон основывался на результатах

детального изучения восприятия движения. Он показал, что если две точки на экране движутся навстречу друг другу — одна по горизонтали, другая по вертикали, — то человек видит движение одной точки по наклонной прямой. Для объяснения эффекта ил­люзии движения Г. Йохансон использовал векторное представ­ление. Движение точки рассматривается им как результат форми­рования двухкомпонентного вектора, отражающего действие двух независимых факторов (движения в горизонтальном и вертикаль­ном направлениях), В дальнейшем векторнаямодель была распро­странена им на восприятие движений корпуса и конечностей че­ловека, а также на движение объектов в трехмерном пространстве. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигательных и вегетативных реакций.

Векторная психофизиология — новое направление, ориентирован­ное на соединение психологических явлений и процессов с векторным кодированием информации в нейронных сетях.

Источник

Оцените статью
Разные способы