Автомобильные масла способы получения

Автомасла и все, что нужно знать о моторных маслах

Как делают моторное масло

Много лет назад, в 1873 году, профессору Джону Эллису удалось впервые получить моторное масло. Он немало времени уделил изучению характеристик сырой нефти. Многочисленные опыты позволили ему сделать вывод, что она обладает прекрасными смазочными характеристиками.

Как делают моторное масло

Добавив изготовленную смазочную жидкость в клапанный механизм паровых двигателей, он заметил, что движение клапанов стало намного плавней. Уменьшился износ деталей, увеличилось время работы силовой установки. Джон зарегистрировал свое открытие и открыл первое в мире производство моторной смазки.

Технология изготовления

Начинается все с добычи сырой нефти. Она подвергается фильтрованию, где очищается от вредных компонентов. Все операции выполняются на специализированных предприятиях, имеющих соответствующее оборудование. Моторные масла делятся на несколько типов, каждый из которых отличается комплектующими и свойствами.

Самыми дешевыми считаются минеральные. Они изготавливаются из нефти, которую подвергают фильтрации и стандартной прогонке. Синтетические относятся к самому дорогому классу. В их основу включены вещества, полученные после сложных химических манипуляций с продуктами из газа и нефти. Гибрид вышеописанных составов стали называть полусинтетикой.

Как делают моторное масло: производственный процесс

Современный процесс изготовления смазочных продуктов для новейшей техники подразделяется на несколько этапов. Сначала проводится подготовка сырья, из которого получаются определенные масляные фракции. Для получения компонентов автомасел используются специальные технологические установки, выполняющие переработку нефти в соответствии с поточными схемами.

После перегонки нефти получаются дистиллятные фракции масла:

  • 350-420 градусов;
  • 420-500 градусов;
  • Более 500С.
Читайте также:  Образец или способ 3 буквы

Современная нефтеперерабатывающая промышленность открывает новые возможности перегонки, используя минимальный фракционный состав. В итоге получается намного больше базовых масел.

На следующем этапе все фракции проходят очистку на специальных маслоблочных установках. Причем очистка может выполняться различными способами. В основном проводится селективная очистка имеющихся масляных фракций. Для этого используется:

  1. Смесь трикрезола с фенолом;
  2. Деасфальтизат, входящий в состав пропана.

В результате получается остаточный рафинат масляной фракции. Его гидроочистка выполняется в постоянном катализаторе. Происходит выработка остаточного рафината при температуре более 500°С. На заключительном этапе происходит получения товарных масел путем компаундирования масляных составляющих и специальных присадок.

Ежедневно на дорогах появляется все больше автомобилей самого высокого класса. Безусловно, изготовители моторных масел учитывают этот фактор. Каждый производитель автомобиля создает особое техническое задание по изготовлению новейшей смазки, соответствующей характеристикам двигателя автомобиля. Она должна надежно защищать двигательную систему и продлять срок ее эксплуатации.

Разумеется, описанная выше технология имеет обобщенный характер. Каждый изготовитель смазочных продуктов старается держать в тайне технологию получения новейшего масла. Только так можно оставаться на плаву в век жесткой конкуренции.

Источник

Автомобильные масла. Получение масел.

Подавляющая масса смазочных материалов всех назначений готовится на базе продуктов переработки нефти.

Основным компонентом всех масел, смазок и некоторых специальных жидкостей, применяемых при эксплуатации автомобилей, является жидкое минеральное масло, получаемое из мазута.

По способу производства масла подразделяются на дистиллятные и остаточные, а также компаундированные (смесь дистиллятного и остаточного масла). Дистиллятные получают разгонкой мазута, выделяя из него обычно не менее трех дистиллятов, содержащих углеводороды с температурами кипения в пределах 350-500º С. Разгонку ведут под вакуумом и при продувке водяным паром (с целью предотвращения крекинга мазута).

Остаток от мазута после отбора из него наиболее вязкого масляного дистиллята называется гудроном. Он используется как топливо для котлов, для получения битумов, высоковязких масел и других целей.

В связи с тем что полученные дистилляты содержат в своем составе избыточное количество нафтеновых кислот, смол, сернистых соединений и других веществ их подвергают очистке. С целью очистки применяют тонко помолотые и специально обработанные отбеливающие глины, которые при смешивании с дистиллятами благодаря сильно развитой поверхности адсорбируют смолы, серную и органические кислоты и другие вещества.

Остаточными маслами называются очищенные гудроны.

Классификация смазочных масел и требования к ним.

Смазочными маслами называют фракции нефти , основу которых составляют углеводороды с температурами кипения выше 350º С.

Масла представляют собой прозрачные или непрозрачные по сравнению с бензинами и дизельными топливами значительно более вязкие жидкости, окрашенные не полностью удаленными из их состава смолами в цвета от желтого до черного. Как и топлива, они легче воды и практически в ней не растворяются.

Все масла нефтяного происхождения делятся на четыре типа:

· моторные (для авиационных газотурбинных, карбюраторных и дизельных двигателей);

· трансмиссионные (в том числе для гидропередач, гидродинамических и гидрообъемных приводов);

· специальные (турбинные, компрессорные и др.);

Требования к автомобильным смазочным маслам:

· бесперебойное поступление ко всем узлам трения в агрегате;

· удерживание масла в узлах трения на всех режимах работы агрегата, в том числе и в период остановки;

· образование и удержание надежных и прочных масляных пленок на трущихся поверхностях;

· охлаждение трущихся деталей и отвод тепла от мест трения;

· вынос продуктов изнашивания из зон трения и защита этих зон от проникновения в них вредных реагентов из внешней среды;

· уплотнение зазоров в сопряжениях работающего агрегата;

· возможно большая стабильность при окислении, механическом воздействии и обводнении, позволяющая обеспечить большой срок службы масла до замены без ущерба для надежности агрегата;

· минимальная токсичность, низкая стоимость и широкая сырьевая база.

Соответствие масел указанным требованиям возможно в том случае, если масла будут:

· обладать оптимальными вязкостными свойствами, обеспечивающими надежную и экономическую работу агрегатов на всех режимах;

· иметь хорошую смазывающую способность для предотвращения интенсивного износа деталей;

· обладать достаточной химической стабильностью, обеспечивающей минимальное изменение структуры и образование коррозионно-активных включений и отложений;

· обладать устойчивостью к процессам испарения, вспенивания и образования эмульсий, а также к выпадению присадок;

· защищать трущиеся поверхности от воздействия агрессивных сред.

Температура застывания масел.

Потеря текучести масла мажет привести к прекращению поступления масла в холодное время к узлам трения и подшипникам. Потеря текучести масла происходит в результате выделения из него высокоплавких углеводородов и образование из них кристаллического каркаса, как это происходит в дизельных топливах, либо вследствие возрастания вязкости охлаждаемого масла до достаточно большой величины.

Температуру масел соответствующую потере им подвижности называют температурой застывания.

При производстве масел осуществляется ряд мер, направленных на снижение температуры застывания. К этим мерам относятся удаление наиболее высокоплавких углеводородов при помощи депарафинизации и введения в очищенные масла депрессорных присадок, вызывающих сильное снижение (депрессию) температуры застывания (многофункциональная присадка АзНИИ-ЦИАТИМ-1 и полиметакрилат Д). Частицы депрессора постоянно находятся во взвешенном тонкодисперсном состоянии и адсорбируют мелкие кристаллы парафинов. В результате изменяется характер кристаллизации – прекращается рост кристаллов, образуется непрочная кристаллическая решетка и масло сохраняет подвижность. Депрессорные присадки при введении в масло в количестве 0,5 % уменьшают температуру застывания на 17-24º С.

Основным показателем качества масел является вязкость.

Вязкость – внутреннее трение жидкого смазочного материала, возникающее между его молекулами и слоями при их относительном перемещении под действием внешней силы.

Если ограничивать само понятие вязкости – то это чисто физическое свойство смазывающей жидкости, показывающее ее состояние в зависимости от температуры.

Использование масла низкой вязкости приводит к повышению трения (масляная пленка выдавливается из зоны трения), нагреву и усиленному изнашиванию деталей (возникает непосредственный контакт между трущимися поверхностями). С другой стороны, с уменьшением вязкости масла облегчается пуск двигателя, ускоряется подача масла в зазоры, на стенки цилиндра в момент пуска. При этом также вымываются продукты износа.

Использование масел чрезвычайно высокой вязкости ведет к потере мощности и, в конечном итоге, снижению КПД машины, также возрастает интенсивность износа вследствие затруднения подачи масла в зазоры. Для улучшения вязкостно-температурных свойств масел целесообразно применять загущенные всесезонные масла. Загущенные масла получают путем загущения маловязкой масляной основы, присадками, способными повышать исходную вязкость масла, а также уменьшать скорость изменения вязкости с температурой. В качестве таких присадок широкое применение получили кремнийорганические жидкие полимеры, а также фторуглеродные материалы. Кремнийорганические жидкие полимеры имеют вязкость, одинаковую с вязкостью нефтяного масла при комнатной температуре, а температура замерзания у них на 40-45º С ниже, чем у нефтяных масел. Они не боятся высоких температур и легко могут работать при температуре на 40-45º С выше, чем нефтяные масла.

Применяемая вязкость масла определяется температурой окружающей среды, типом двигателя, особенностями агрегата или узла трения. Вязкость увеличивается с понижением температуры и уменьшается при ее повышении. Зависимость вязкости от температуры можно характеризовать отношением кинематической вязкости при температуре 50º С к кинематической вязкости при температуре 100º С. Чем меньше это отношение, тем выше вязкостно-температурные свойства масла. Степень изменения вязкости масла от температуры выражается индексом вязкости (ИВ). Чем выше значение ИВ, тем лучше масло.

Условия работы масла в двигателе.

В зависимости от условий работы масла в двигателе можно выделить три зоны:

· высокотемпературную, включающую камеру сгорания, обращенную к ней поверхность днища поршня и верхнюю часть цилиндра. Температура деталей входящих в эту зону может достигать 400º С (днище поршня) и даже 800º С (выпускной клапан), температура горящих газов может достигать 2500º С;

· среднетемпературную, охватывающую весь поршень с поршневыми кольцами и пальцем, верхнюю часть шатуна и стенки цилиндра. Максимальная температура в этой зоне достигает 300-350º С (поршневые кольца);

· низкотемпературную, к которой относятся область коленчатого вала, картера и т.п. в области коренных и шатунных подшипников температура достигает 180º С.

Физическая стабильность масла при повышенных температурах.

Основной характеристикой физической стабильности масла при повышенных температурах является его способность к испарению. Чем интенсивнее испаряется масло в средне- и низкотемпературной зонах прогретого двигателя тем ниже его физическая стабильность. Способность масла к испарению при повышенных температурах принято характеризовать температурой вспышки.

Температура вспышки – минимальная температура нефтепродукта, при которой его пары от нагревания в стандартном приборе образуют с окружающим воздухом смесь, вспыхивающую от пламени определенных размеров.

Чем выше температура вспышки, тем меньше испаряемость масла и, следовательно, лучше физическая стабильность.

Нагарообразование в высокотемпературной зоне двигателя.

Нагар – это твердая углеродистая масса с шероховатой поверхностью, чаще черного цвета. Нагар образуется в высокотемпературной зоне двигателя вследствие сгорания попадающего туда при работе масла. Нагар отлагается на стенках камеры сгорания , днище поршня и стенках верхнего пояска поршня (200-420º С), свечах зажигания и форсунках (350-850º С), клапанах (420-815º С). Состав нагара зависит от химического состава масла, используемого топлива и загрязненности воздуха. Основными элементами, образующими нагар при работе двигателя на неэтилированном бензине, являются углерод (до 75 %), кислород (до 20 %) и водород (до 5 %).

Нагар ухудшает теплоотвод от деталей, способствует возникновению детонации и калильного зажигания, а также загрязняет работающее масло твердыми частицами.

Одной из основных причин возникновения нагара является несоблюдение теплового режима двигателя.

Лакообразование в среднетемпературной зоне двигателя.

Лаки представляют собой прочные тонкие пленки толщиной в десятые и сотые доли миллиметра с гладкой поверхностью, образующиеся на горячих деталях двигателя нагретых до температуры порядка 200-300º С (наружные и внутренние стенки поршня, поршневые кольца, верхняя головка шатуна).

Лаки являются продуктами окисления (асфальтены и кислые смолы) углеводородов входящих в состав масел.

Лакообразование зависит от качества масла, теплового режима двигателя и технического состояния его поршневой группы. Наибольшую опасность лаковое отложение представляет для поршневых колец. Одновременно с образованием лакового отложения происходит внедрение в него попадающих из высокотемпературной зоны сажи, пыли и других твердых частиц. По истечении некоторого времени лаковое отложение с внедрившимися в него твердыми частицами вызывает пригорание поршневых колец, внешне проявляющееся в полной потере ими подвижности. Одной из мер борьбы с лакообразованием является повышение химической стабильности масел по средствам введения в их состав антиокислительных присадок (например, фторуглеродных, дитиофосфатов, металлов, динолов, аминов и т.п.). Фторуглеродные масла проявляют высокую устойчивость ко всем видам окисления.

К антиокислительным присадкам относятся также вещества, уменьшающие активность каталитического действия металлов, их оксидов и солей на процесс окисления, – пассиваторы металлов. Пассиваторы образуют на поверхности металлов стойкие адсорбционные или химически связанные пленки. Они не допускают каталитического воздействия металлов на процесс окисления, обеспечивая также защиту металла от коррозионного действия продуктов окисления.

Также с целью предотвращения отложения смолисто-асфальтеновых веществ помимо антиокислительных присадок в масла вводят моющие (уменьшают и предотвращают образование высокотемпературных отложений, обеспечивают чистоту деталей, нейтрализуют продукты окисления топлива и масла) и диспергирующие (поддерживают загрязняющие примеси в масле в мелкодисперсном состоянии и предотвращают образование низкотемпературного шлама) присадки (Рис.79.).

Изменение масла в низкотемпературной зоне двигателя.

Несмотря на довольно мягкий тепловой режим в низкотемпературной зоне двигателя, там также происходит окисление масла. Типичными продуктами окисления масла в низкотемпературной зоне являются органические кислоты. Органические кислоты частично растворяются в масле, повышая его кислотное число, и частично переходят в кислые смолы, которые являются одним из компонентов шламов.

Шламы – это густые, мазеобразные, липкие, темного цвета продукты, образующиеся при невысоких температурах (как правило, не выше 120º С), выпадающие из масла в виде осадков и создающие отложения в картере, маслопроводах и каналах, фильтрах, маслоприемнике и др. Шламы или осадки в двигателе состоят наполовину из масса, а остальное составляют вода (5-35 %), топливо, продукты окисления (сажа, нагар), пыль, продукты износа деталей.

Образовавшиеся в масле при его окислении кислоты очень агрессивны (в первую очередь по отношению к свинцу).

Для предотвращения коррозии металлов используют антикоррозионные присадки, главным образом содержащие органические соединения. В их молекулы входят сера или фосфор или оба этих элемента. Они способны образовывать на поверхности металла защитные пленки, защищая различные детали от коррозии.

Для предотвращения коррозионного действия продуктов окисления и нейтрализации коррозийно-агрессивных продуктов сгорания сернистых топлив в масло вводят щелочные присадки (например, сульфонаты).

Таблица. 15. Основные типы присадок к моторным маслам.

Уменьшают степень изменения вязкости с изменением температуры

Полиизобутилен, полиметакрилат, сополимеры стирола с бутадиеном и др.

Уменьшают и предотвращают образование высокотемпературных

отложений, обеспечивают чистоту деталей, нейтрализуют продукты окисления топлива и масла

Масляные и синтетические сульфонаты металлов – кальция, магния и др., фосфонаты, салицилат

Поддерживают загрязняющие примеси в масле в мелкодисперсном состоянии и предотвращают образование низкотемпературного шлама.

Сукцинимиды, (имидопроизводные янтарной кислоты), основание Минниха

Антиокислительные и антикоррозионные

Снижают скорость окисления и образования нерастворимых, а также коррозионно-агресивных продуктов в масле. Уменьшают рост вязкости и предотвращают коррозию деталей из цветных металлов.

Диалкилдитиофосфат цинка, дитиокарбонат цинка, эфиры, бензотриазол

Противоизносные и противозадирные

Предотвращают разрушение контактирующих поверхностей деталей при граничном трении снижают износ за счет образования на поверхностях трения защитных пленок

Дитиофосфаты металлов нафтенат свинца трикрезилфосфат олеиновая кислота

Понижают температуру застывания масла за счет снижения интенсивности образования кристаллов парафина при низких температурах

Полиметакрилат и др.

Предотвращают коррозию (ржавление) деталей из черных металлов

Сульфонаты магния и кальция

Антифрикционные (модификаторы трения)

Уменьшают трение в сопряженных парах снижают расход топлива двигателем

Дисульфид молибдена дитиофосфаты молибдена соединения графита бораты

Предотвращают образование пены в двигателе

Марки масел для двигателей и области их применения (Таблица.16)..

Моторные масла производятся по ГОСТ 6380-83, 12337-84, 25770-83, 38101783-80, 23497-79 и др. Моторные масла для двигателей внутреннего сгорания автомобильной технике делятся на масла для карбюраторных двигателей и масла для дизелей.

По эксплуатационным свойствам предусмотрено шесть групп моторных масел: А, Б, В, Г, Д и Е. Последние две группы используются в тяжелых условиях эксплуатации. Переход от масел низших групп (А, Б) к высшим (В, Г), как правило, достигается путем расширения ассортимента и количественного увеличения присадок в маслах. Так в маслах группы А содержится 3,5 % присадок, группы Б1 – 5,5 %, группы В1 – 8,0 %, группы Г1 – 10-15 %.

Таблица.16. Рекомендуемые области применения масел и соответствие групп моторных масел по эксплуатационным свойствам.

Группа масла по ГОСТ 17479-85

Рекомендуемая область применения

Нефорсированные карбюраторные и дизельные двигатели

Малофорсированные карбюраторные двигатели, работающие в условиях, способствующих образованию высокотемпературных отложений и коррозии подшипников

Среднефорсированные карбюраторные двигатели

Высокофорсированные карбюраторные двигатели

Высокофорсированные дизели без наддува

Высокофорсированные дизели с наддувом, работающие в тяжелых условиях или когда применяемое топливо требует использования масел с высокой нейтрализующей способностью, антикоррозионными и противоизносными свойствами, малой склонностью к образованию всех видов отложений

Лубрикаторные системы смазки цилиндров дизелей, работающих на топливе с высоким содержанием серы

Бензиновые двигатели зарубежных автомобилей выпуска 1980-1988гг.

Дизели и карбюраторные двигатели (универсальное масло)

Бензиновые двигатели зарубежных автомобилей выпуска после 1988 г.

Турбонаддувные дизели выпуска после 1983г.

Дизели и карбюраторные двигатели (универсальные масла)

Быстроходные дизели с турбонаддувом, к маслу которых предъявляются повышенные требования

В зависимости от назначения масла групп Б, В и Г делятся на подгруппы и обозначаются индексом 1 – для карбюраторных двигателей и 2 – для дизельных двигателей. Универсальные масла для карбюраторных и дизельных двигателей одного уровня форсирования индекса в обозначении не имеют, а масла, принадлежащие к разным группам, должны иметь двойное буквенное обозначение (первая буква при использовании в дизельных двигателях, вторая – в карбюраторных).

Примеры обозначения моторных масел (по ГОСТ 17479.1-85):

8 – класс вязкости (вязкость 8 мм 2 /с при 100º С),

В1 – масло для среднефорсированных карбюраторных двигателей.

4З/8 – класс вязкости,

З – масло содержит загущающие присадки,

В2Г1 — предназначенное для среднефорсированных дизелей (В2) и высокофорсированных карбюраторных двигателей (Г1).

В США и странах Европы обозначение масел для двигателей включает в себя класс вязкости и область применения.

Градация масел по вязкости производится по классификации SAE J 300е, разработанной обществом инженеров (Society of Automotive Engineers).

По условиям и областям применения оценка качества идет по системе API, предложенной Американским нефтяным институтом (American Petroleum Institute).

По классификации вязкости SAE J 300e масла подразделяются и маркируются следующим образом:

— летние – цифрами 20, 30, 40, 50 (цифра обозначает вязкость в секундах Сейболта при 8,9º С);

— зимние – 10W, 15W, 20W, 25W (W- первая буква от слова Winter (зима));

— всесезонные (загущенные) имеют двойную нумерацию, например, 10W-50, что означает, что масло при 17,8º С соответствует по вязкости SAE -10, а при 98,9º С – 50.

По классификации API моторные масла делятся на две категории:

S – категория «сервис» (предусмотрено для масел карбюраторных двигателей легковых автомобилей, работающих в сфере обслуживания);

С – коммерческая категория (для масел дизельных двигателей тягачей, дорожно-строительных машин, осуществляющих коммерческие перевозки).

В каждой категории масла уровень эксплуатационных свойств в зависимости от условий работы подразделяется на классы, имеющие маркировку латинскими буквами A, B, C, D, E, F, G. Поэтому обозначение области применения осуществляется двумя буквами, указывающими категорию и класс масел, например: SE – для карбюраторных двигателей, работающих в условиях эксплуатации средней напряженности; CD – для дизельных двигателей, работающих в напряженных условиях.

Универсальные масла, относящиеся к обеим категориям классификации, имеют маркировку двух классов разных категорий, например SE/CD.

Таблица.17. Применение некоторых марок моторных масел.

Для смазывания двигателей автомобилей ВАЗ

Дизельные и карбюраторные двигатели всех моделей, за исключением двигателей автомобилей ВАЗ

Среднефорсированные карбюраторные двигатели и дизели грузовых автомобилей

Масло для карбюраторных двигателей и дизелей легковых автомобилей и микроавтобусов

Для двигателей автомобилей КамАЗ, автобусов «Икарус», тракторов К-700

Высокофорсированные дизели с турбонаддувом, установленные на большегрузных автомобилях и промышленных тракторах

Синтетические масла представляют собой индивидуальные соединения или смеси нескольких соединений близкой химической структуры (например, поли-L-олефины и др.) синтетические масла имеют высокий индекс вязкости (150-170). Температура потери подвижности синтетических масел ниже (до -65º С), чем у минеральных. Вязкость синтетических масел при температурах 250-300º С, выше (до 3 раз), чем у равновязких им при 100º С минеральных, они имеют лучшую термическую стабильность, низкую испаряемость и малую склонность к образованию высокотемпературных отложений. Синтетические масла, как правило, превосходят минеральные по антиокислительным свойствам, диспергирующей и механической стабильности. Они также обладают равными или лучшими противоизносными и противозадирными свойствами. За счет лучших вязкостно-температурных характеристик во всем интервале встречающихся на практике температур расход топлива при использовании синтетических масел снижается на 4-5 %.

Трансмиссионные масла предназначены для смазывания зубчатых передач в агрегатах трансмиссии автомобиля (коробки передач, раздаточные коробки, ведущие мосты, рулевые передачи).

Трансмиссионные масла должны обладать высокими противоизносными и противозадирными свойствами, образовывать минимальное количество пены, а также иметь хорошие противокоррозионные свойства.

Удовлетворение этих высоких требований достигается подбором соответствующей масляной основы и добавкой к ней комплекса присадок.

Масла классифицируют по вязкости (классы вязкости) и по уровню эксплуатационных свойств (группы).

Обозначение трансмиссионных масел состоит из трех групп знаков:

— первая группа обозначается буквами ТМ;

— вторая группа знаков обозначается цифрами и характеризует принадлежность к группе масел по эксплуатационным свойствам;

— третья обозначается цифрами характеризует класс вязкости (9, 12, 18, 34), например, ТМ-5-9, где ТМ – трансмиссионное масло, 5 – масло по условиям эксплуатации имеет противозадирные и многофункциональные присадки, 9 – класс вязкости.

Таблица.18. Соответствие отечественных и иностранных классификационных групп трансмиссионных масел.

Группа масел по ГОСТ 17479.2-85

Группа масел по API

Механизмы, для которых требуются масла с депрессорными и антипенными присадками

Механизмы, для которых требуются масла с антифрикционными присадками

Ведущие мосты со спирально-коническими передачами, требующие использования масел со слабыми противозадирными присадками

Гипоидные передачи, требующие использования масел с противозадирными присадками средней активности

Гипоидные передачи грузовых и легковых автомобилей, требующие использования масел с активными противоизносными и противозадирными присадками

Гипоидные передачи, работающие в очень тяжелых условиях и требующие использования масел с высокоэффективными противозадирными и противоизносными присадками

Таблица.19. Группы трансмиссионных масел различающиеся наличием присадок и эксплутационными свойствами.

Область применения, контактные напряжения, температура масла в объеме

Прямозубые, конические, спирально-конические и червячные передачи при контактных напряжениях до 600МПа и температуре в объеме до 90º С

Прямозубые, спирально-конические и червячные передачи до 1200 МПа и температуре в объеме до 120º С

Противозадирные присадки умеренной эффективности

Те же передачи, но при контактных напряжениях до 2000 МПа и объемной температуре до 120º С

Противозадирные присадки высокой эффективности

Прямозубые спирально-конические передачи, работающие при контактных напряжениях свыше 2000 МПа. Гипоидные передачи работающие при высокой скорости, низком крутящем моменте и низкой скорости, высоком крутящем моменте и объемной температуре до 130º С

Противозадирные и противоизносные высокоэффективные присадки и многофункциональные композиции присадок

Гипоидные передачи работающие при высокой скорости, ударных нагрузках, высоком крутящем моменте и контактных напряжениях до 3000МПа и объемной температуре выше 130º С

В маркировке трансмиссионных масел по нормативно-технической документации буквы и цифры обозначают следующее:

Т – масло трансмиссионное,

С – получено из сернистой нефти,

П – масло содержит присадку,

К – масло для автомобилей КамАЗ.

Группа ТМ-1 – нигролы зимний и летний (ТУ 38.101529-75). К группе ТМ-1 можно отнести базовые масла (ТБ-20, ТС-14,5), служащие основой для изготовления автомобильных трансмиссионных масел.

К группе ТМ-2 относится масло для коробок передач и рулевого управления – ТС (ОСТ 38.01260-82), класс 18.

В группу ТМ-3 входят масла ТСп-10, Тап-15В, ТСп-15К, выпускаемые по ГОСТ 23652-79.

ТСп-10 применяют для смазывания тяжелонагруженных цилиндрических, конических и спирально-конических передач грузовых автомобилей. Тап-15В служит для смазывания тяжелонагруженных цилиндрических, конических и спирально-конических передач грузовых автомобилей.

ТСп-15К служит в качестве всесезонного для умеренной климатической зоны, предназначено для тяжелонагруженных цилиндрических и спирально-конических передач, автомобилей КрАЗ, КамАЗ, УралАЗ.

К группе 4 относятся масла ТСп-14гип (ГОСТ 23652-79), ТСЗ-9гип (ОСТ 38.101158-78), ТСгип (ОСТ 38.01260-82).

ТСЗ-9гип (класс 9)применяется в агрегатах трансмиссии грузовых автомобилей в районах Крайнего Севера при температуре воздуха до -55º С.

ТСп-14гип (класс 18) применяется для гипоидных передач грузовых автомобилей в умеренной и жаркой климатической зонах.

В группу 5 входят масла ТАД-17и (ГОСТ 23652-79) и ТМ5-12рк (ТУ 38.101844-80).

ТАД-17и (класс 18) – применяется в тяжелонагруженных цилиндрических, спирально-конических и гипоидных передачах грузовых и легковых автомобилей в умеренной и жаркой климатической зонах.

ТМ5-12рк (класс 12) – предназначено для применения в качестве всесезонного, в первую очередь для эксплуатации в северных районах.

Для гидромеханических коробок передач применяют масла марок А и Р (ту 38.1011282-89) и масло МГТ (ТУ 38.10111-03-87). Масло марки А имеет температуру застывания -40º С, его применяют всесезонно в умеренной климатической зоне в гидротрансформаторах и гидромеханических передачах автомобилей и автобусов. Масло марки Р применяется в гидроусилителях рулевого управления автомобилей.

Для автомобилей, эксплуатируемых в северных районах страны, разработано масло МГТ, которое по эксплуатационным свойствам соответствует маслу марки А, но имеет лучшие низкотемпературные показатели работоспособности до -50º С.

Наряду с жидкими маслами при эксплуатации автомобилей находят применение мазеобразные смазочные материалы, называемые пластичными (консистентными) смазками или просто смазками. Их особенность состоит в том, что они совмещают в себе механические свойства твердых и жидких тел.

Смазка имеет следующее строение (Рис.80.). Ее основная масса (70-95 %) – минеральное (редко растительное) масло. К этому маслу добавляют загуститель, способный образовывать «каркас».

Роль структуры, обеспечивающей вязкость, прочность и другие физические свойства смазки, обычно играет жирная соль мягкого металла (происходит нейтрализация высших жирных кислот гидроксидами металлов). по массе добавка составляет 5-30 %. Так же в качестве загустителя применяются извлекаемые из нефти твердые углеводороды (парафин, церезин и их смеси). Название металла обычно переносят и на саму смазку – натриевая, кальциевая, литиевая, бариевая, магниевая, цинковая, стронциевая, алюминиевая, свинцовая и др.

Вся специфика свойств смазок связана с тем, что загуститель будучи равномерно распределенным в жидком масле, образует ажурный кристаллический каркас. Каркас образованный любым загустителем, пронизывает весь объем масла и, сковывая подвижность последнего, сообщает всей системе необходимую подвижность.

Кроме двух основных компонентов – минерального масла и загустителя, в смазках могут содержаться и другие вещества.

В смазку вводятся различные целевые присадки – противозадирные, противоизносные, противоокислительные и др. Кроме присадок может использоваться твердый наполнитель, например, чешуйчатый графит или дисульфид молибдена, который значительно улучшает антифрикционные свойства смазки.

Требования к пластичным автомобильным смазкам:

· разделять трущиеся детали прочной смазочной пленкой для уменьшения износов и потерь на трение;

· удерживаться в узлах трения, не вытекая из них;

· защищать трущиеся детали от попадания пыли, влаги и грязи, не вызывать коррозионного износа деталей;

· легко пропрессовываться (прокачиваться) по смазочным каналам, не требуя для этого слишком больших давлений;

· не изменять длительное время свойств в процессе работы и хранения;

· быть экономичными и недефицитными.

Основные эксплуатационные характеристики пластичных смазок.

Смазки в первую очередь характеризуются консистенцией. Консистенцию смазок определяют показателем пенетрации по ГОСТ 5346-78 при 25º С.

Пенетрацией называется условный показатель механических свойств смазок, численно равный глубине погружения в них конуса стандартного прибора, выраженной в десятых долях миллиметра.

В сосуд со смазкой погружается металлический конус под действием собственного веса (1Н). Чем больше глубина погружения, тем «мягче» смазка и тем больше величина пенетрации.

Кроме консистенции смазки характеризуются температурой каплепадения, пределом прочности на сдвиг, вязкостью при различных температурах, механической стабильностью, испаряемостью, коллоидной стабильностью и другими показателями.

Предел прочности – это то минимальное удельное напряжение, которое нужно приложить к смазке, чтобы изменить ее форму и сдвинуть один слой смазки относительно другого.

При меньших нагрузках консистентная смазка сохраняет свою внутреннюю структуру и упруго деформируется подобно твердому телу, а при больших давлениях структура разрушается и смазка ведет себя как вязкая жидкость.

Предел прочности зависит от температуры смазки (с повышением температуры уменьшается). От величины предела прочности зависит ее способность удерживаться в негерметизированных узлах трения, на вертикальных и наклонных поверхностях деталей, на деталях, подверженных действию инерционных сил.

Температура каплепадения (минимальная) – это та температура, при которой из небольшого объема смазки, нагреваемой в стандартных условиях, отделяется и падает первая капля. (Рис.81.)

Смазка с низкой температурой каплепадения не будет удерживаться в механизме, и ее придется часто пополнять, а смазка с чрезвычайно высокой температурой каплепадения вызовет усиленный нагрев трущихся деталей.

Коллоидная стабильность характеризует (в процентах) отделение масла от смазки при воздействии на нее в специальном приборе небольшой нагрузки. Чем меньше этот показатель, тем выше бал. В зависимости от количества выделяющегося жидкого масла смазка может ухудшить или полностью потерять свои смазочные свойства.

Испаряемость – смазка, нагреваемая в тонком слое при определенной температуре, взвешиванием определяется испаряемость масла (в процентах).

Марки пластичных смазок и области их применения.

Эксплуатационные свойства смазок главным образом определяются видом загустителя.

Эти смазки образуют группу, называемую солидолы. Различают солидолы жировые и синтетические в зависимости от способа получения и природы загустителя. В жировых загустителем служат мыла жирных кислот (костный жир), входящих в состав естественных жиров. Жировые солидолы менее склонны к уплотнению при хранении, что делает их применение более предпочтительным перед синтетическими. Синтетические солидолы имеют в качестве загустителя продукт химической реакции. Жировые и синтетические солидолы представляют собой мягкую маслянистую мазь, имеющую цвет от светлого до темно-коричневого. Смешивание солидолов разных марок не ухудшает их свойств. Солидолы выпускают двух разновидностей – обычный и пресс-солидолы. Пресс-солидолы мягче жировых, что облегчает их введение через пресс-масленки при низкой температуре, но верхний температурный предел их применения ниже. При нагревании примерно до 80º С пресс-солидолы необратимо распадаются, и это делает невозможным их применение в таких узлах автомобиля, как ступицы передних колес, подшипники водяного насоса, прерыватель-распределитель зажигания.

К солидолам относится также графитная смазка «УСсА» – грубая плотная мазь с серебристым оттенком. Она изготовлена на более вязком масле, чем солидол С. В ее состав входит около 10 % наполнителя – графита П. грубого помола. «УСсА» хорошо удерживается на открытых поверхностях, а добавка графита несколько повышает ее противозадирные свойства, но ее недопустимо применять в узлах трения с высокой частотой обработки. В автомобилях можно использовать только для смазки рессор.

Комплексные кальциевые смазки.

По сравнению с солидолами комплексные кальциевые смазки обладают высокими противозадирными свойствами, но склонны к термоупрочнению и гигроскопичны, то есть поглощают воду. К этим смазкам относятся униолы («Униол-1», «Униол-3», «Униол-3М»). Смазки «Униол-3» и «Униол-3М» изготовлены на смеси маловязких масел, что позволяет применять их в качестве низкотемпературных смазок в северных и северо-восточных районах при круглогодичной эксплуатации. Смазка «Униол-ЗМ» может применяться при температуре в узлах трения от -50ºС до +140º С. Она является всесезонной смазкой в северных районах вместо солидола. Смазка «Униол-ЗМ» обладает повышенными противозадирными и противоизносными свойствами за счет добавления в нее небольшого количества дисульфида молибдена.

Литиевые смазки имеют достаточно широкое применение благодаря своим ценным эксплуатационным качествам. «Литол-24» – это мягкая мазь вишневого, реже коричневого цвета, которую используют как единую смазку для всех основных узлов трения автомобиля, кроме того, «Литол-24» обладает хорошими консервационными свойствами.

Литиевые смазки водостойки, выдерживают широкий диапазон температур и обладают хорошей механической стабильностью.

К литиевым относятся многоцелевые смазки «Фиол-1», -2, -2М, -3, которые отличаются степенью вязкости. В состав смазок «ШРУС-4» и «Фиол-2У» введена эффективная противозадирная добавка – дисульфид молибдена. Смазка «ШРУС-4» обладает высокими эксплуатационными свойствами и используется для смазки шарниров равных угловых скоростей автомобиля «Нива», шарниров автомобилей ВАЗ, подшипников, телескопических стоек и тд.

«Северол-1» – высококачественная низкотемпературная смазка, содержащая антиокислительную и противоизносную присадки. Может заменить почти все смазки, применяемые в автомобиле.

«ЦИАТМ-201» (мягкая желтая или светло-коричневая мазь) – одна из основных низкотемпературных смазок в России. «ЦИАТМ-201» применяют в узлах трения всех типов при небольших удельных нагрузках.

«ЛЗ-31» – специальная стабильная смазка для выжимного подшипника сцепления грузовых автомобилей. Смазка изготавливается на основе сложных эфиров.

Бариевые смазки уступают литиевым по температурным характеристикам, однако превосходят их по водостойкости.

Комплексная бариевая смазка «ШРБ-4» – слегка волокнистая липкая мазь, имеющая цвет от светло – до темно-коричневого. «ШРБ-4» является лучшей смазкой для шаровых шарниров автомобиля, она хорошо защищает металлы от коррозии, сохраняет высокую работоспособность в присутствии воды и не оказывает вредного воздействия на резину.

Углеводородные смазки – имеют высокую водостойкость и консервационную способность.

«ВТВ-1» – вазелин технический волокнистый. «ВТВ-1» не растворяется в воде и электролите, благодаря адгезионной присадке обладает хорошим сцеплением с металлами, морозостоек., применяется для смазывания клемм аккумуляторов автомобилей.

Жидкости для системы охлаждения двигателя и гидравлических систем агрегатов автомобиля.

Жидкости для системы охлаждения двигателя.

Надежность работы двигателя во многом зависит от состояния системы охлаждения и качества охлаждающей жидкости, которая должна отвечать следующим требованиям.

· быть дешевой и недефицитной;

· обладать высокой теплоемкостью, теплопроводностью и определенной вязкостью;

· иметь высокую температуру кипения и низкую температуру замерзания;

· не образовывать отложений на омываемых стенках и не загрязнять систему охлаждения;

· не вызывать коррозию металлических деталей и не разрушать резиновые детали;

· иметь хорошую химическую и физическую стабильность;

· не вызывать поломок деталей системы охлаждения при застывании, возможно меньше изменять объем при нагревании и не вспениваться при попадании нефтепродуктов;

· не быть токсичными и пожароопасными.

Вода как охлаждающая жидкость.

Вода обладает наивысшей из всех жидкостей удельной теплоемкостью, низкой вязкостью, обеспечивает легкость циркуляции в системе охлаждения, имеет достаточно высокую температуру кипения (105 – 108ºС при давлениях 0,11 – 0,12 МПа в закрытых системах охлаждения). Ее преимуществом перед другими жидкостями для систем охлаждения является дешевизна, недефицитность, безвредность для здоровья, негорючесть. К недостаткам воды как охлаждающей жидкости относится ее способность образовывать накипь (отложения), высокая температура замерзания и способность вызывать коррозию металлов.

Накипь, обладая низкой теплопроводностью, ухудшает отвод тепла от стенок двигателя, уменьшает проходное сечение каналов и нарушает тепловой режим двигателя. При толщине слоя накипи 1,5 – 6 мм увеличивается расход топлива на 10 – 30 %, масла – на 15 – 40 %, а мощность двигателя снижается на 10 -25 %.

Образование накипи обусловлено жесткостью природной воды, т.е. наличием в ней растворимых солей кальция и магния. С течением времени эти соли, изменяя свой химический состав, становятся нерастворимыми и откладываются в виде слоя накипи. Интенсивность образования накипи в системе охлаждения характеризуется жесткостью воды.

Жесткость воды измеряется миллиграмм – эквивалентами ионов кальция и магния, приходящимися на 1 л воды.

Наиболее целесообразно применять для охлаждения двигателей мягкую воду, так как она не дает накипи.

Перед использованием в качестве охлаждающей жидкости жесткой и очень жесткой воды следует выполнить ее умягчение одним из следующих способов:

· обработка воды содой (Na2CO3) или тринатрийфосфатом (Na3PO4) c последующим фильтрованием;

· пропускание воды через глауконитовый или пермутитовый фильтры;

· кипячение воды (дорогой и неэкономичный способ);

· обработка воды магнитным силовым полем в направлении, перпендикулярном силовым линиям, в результате чего содержащиеся в воде соли не образуют накипи, а выпадают в виде легко смывающегося шлама.

В случае использования жесткой воды без умягчения в нее следует добавлять противонакипные присадки (антинакипины). Одной из таких присадок является калиевый хромпик (K2Cr2O7). Применению любого антинакипина должна предшествовать очистка системы охлаждения от старой накипи.

Использование воды в качестве охлаждающей жидкости в холодное время года нежелательно, что связано с ее высокой температурой замерзания, а также со значительным увеличением объема (до 10 %) при переходе в твердое состояние, поэтому зимой для охлаждения двигателей необходимо применять специальные охлаждающие низкозамерзающие жидкости.

Низкозамерзающие жидкости на основе этиленгликоля.

Большое распространение в качестве охлаждающей жидкости получили смеси воды с двухатомным спиртом – этиленгликолем (C2H4(OH)2). Этиленгликоль представляет собой довольно вязкую, бесцветную или желтоватую жидкость с плотностью при 20ºС 1,11 г/см 3 , с температурой кипения 197,5º С и температурой замерзания 12º С.

Этиленгликоль обладает неограниченной растворимостью в воде, причем получающиеся температуры замерзания у растворов оказываются ниже, чем у смешиваемых компонентов в чистом виде. Минимальное значение температуры замерзания смеси этиленгликоля с водой (-75º С) получается при концентрации этиленгликоля 66,7 %.

Этиленгликолевая жидкость имеет коэффициент объемного расширения больший, чем вода, поэтому, чтобы при прогретом двигателе избежать переполнения системы охлаждения и потери части жидкости, ее заполняют на 92 – 95 % от объема системы.

Нельзя допускать попадания в этиленгликолевую жидкость нефтепродуктов, которые вызывают ее вспенивание.

Этиленгликолевые антифризы выпускают двух марок 40 и 65 в соответствии с их максимальными температурами замерзания. Для уменьшения коррозионного воздействия антифризов на сталь, медь, алюминий и их сплавы в состав растворов вводят незначительное количество специальных присадок: 2,5 – 3,5 г динатрийфосфата (Na2HPO4) и 1 г декстрина на 1 л антифриза. Специально для защиты цинка в состав антифриза вводят 7,5 – 8 % молибденовокислого натрия (Na2MoO4), что отмечается в маркировке строчной буквой м (40м или 65м).

Так же выпускается этиленгликолевая охлаждающая жидкость Тосол трех марок: Тосол-А, Тосол-А40, Тосол-Л65. Тосол-А служит для получения жидкостей Тосол-А40 и Тосол-А65 путем разбавления его дистиллированной водой и добавления комплекса различных присадок.

С 1988 г. выпускается антифриз «Лена» трех марок: ОЖ-К, ОЖ-40, ОЖ-65.

Поскольку антифризы различаются по рецептуре, смешивать различные марки между собой не следует.

Этиленгликоль и его водные растворы очень ядовиты. Однако отравляющее действие их проявляется только при попадании в желудочно-кишечный тракт, поэтому специальных мер для защиты неповрежденной кожи и дыхательных путей при использовании этиленгликолевых растворов не требуется.

Срок службы охлаждающих жидкостей ограничен. При интенсивной эксплуатации автомобиля «Тосол» надежно работает в течение 60 тыс. км пробега.

Жидкости для гидравлических систем.

Жидкости для гидравлических систем должны удовлетворять следующим требованиям:

· иметь хорошие вязкостно-температурные свойства, обеспечивающие высокую подвижность при низких температурах окружающего воздуха и отсутствие подтеканий в жаркий период;

· не разрушать металлических и резиновых деталей;

· обладать высокой химической и физической стабильностью, не расслаиваться, не выделять каких либо осадков, не вспениваться;

· обладать хорошими противоизносными свойствами и обеспечивать уменьшение интенсивности износа трущихся пар и уплотнителей;

· быть пожаро – и взрывобезопасными, нетоксичными и недефицитными.

БСК (касторовая жидкость) состоит из 50 % бутилового спирта и 50 % касторового масла. Жидкость БСК обладает весьма хорошими смазывающими свойствами, но недостаточно высокими вязкостно-температурными свойствами, физической и химической стабильностью. Работоспособна до температуры -20º С. Для сохранения работоспособности при более низких температурах жидкость разбавляют этиловым или бутиловым спиртом. При повышенных температурах происходит испарение спирта, из-за чего увеличивается вязкость и повышается температура замерзания жидкости. Не пригодна для использования на автомобилях с дисковыми тормозами. Огнеопасна.

Кроме БСК, могут применяться спиртокасторовые жидкости, состоящие из смеси касторового масла с изоамиловым (АСК) или этиловым (ЭСК) спиртами.

Спиртокасторовые жидкости плохо смешиваются с водой, при ее попадании они расслаиваются, становятся физически нестабильными и непригодными к применению.

Гликолевая тормозная жидкость ГТЖ-22М – смесь гликолей, воды и противокоррозионной присадки. Она работоспособна в интервале температур от +50 до -50º С, закипает при температуре +140º С, поэтому непригодна для автомобилей с дисковыми тормозами, хорошо растворима в воде, смешивается с тормозной жидкостью «Нева». Жидкость ядовита.

Жидкость «Нева» состоит из 41 – 59 % этилкарбитоля, 31 -34 % диолов, 5 % эфиров карбитола и 13 – 14 % смесей гликолей с добавками загустителей и противокоррозионных присадок. Работоспособна в широком диапазоне температур от –50 до +50º С, закипает при +190º С. Огнеопасна и ядовита.

Так же выпускается тормозная жидкость «Томь», превосходящая «Неву» по низкотемпературным свойствам. Выпускаемая в России тормозная жидкость «Роса» соответствует мировым стандартам (dot-3; dot-4).

В качестве жидкости для заполнения гидравлических систем используют маловязкие нефтяные масла или их смеси с добавлением вязкостных и других присадок. Амортизационная жидкость должна обладать определенной вязкостью. Высокая вязкость жидкости вызывает жесткость амортизатора, а слишком низкая приводит к бездействию амортизатора вследствие чрезмерно мягкой работы и служит причиной утечки жидкости через уплотнители.

Для телескопических и рычажно-кулачковых амортизаторов выпускается всесезонная амортизационная жидкость АЖ-12Т, которая состоит из трансформаторного масла и кремнийорганической жидкости с добавлением противоизносной присадки и антиокислителей. Жидкость работоспособна при давлении до 12 МПа и температуре от -50 до +140º С.

Для заполнения гидрообъемных передач и системы гидроусиления руля применяют масло марки Р, которое содержит противоизносную, антиокислительную, моющую и антипенную присадки и поэтому способно работать при тяжелых эксплуатационных режимах.

Для автомобилей эксплуатируемых в районах с температурой ниже -40ºС, в качестве амортизационной жидкости применяют приборное масло МВП, имеющее температуру застывания не ниже -60º С. Масло МВП используется для заполнения гидравлических домкратов. Для заполнения подъемных механизмов автомобилей-самосвалов в летних условиях используется индустриальное масло 20 (веретенное 3) с температурой застывания не выше -20º С , в зимних условиях индустриальное масло 12 (веретенное 2) с температурой застывания не выше -30º С.

Электролит для кислотных аккумуляторных батарей представляет собой раствор аккумуляторной серной кислоты в дистиллированной воде. Аккумуляторная серная кислота имеет плотность 1,83 г/см 3 , а плотность электролита зависит от климатической зоны и колеблется от 1,24 до 1, 31 г/см 3 . Электролит плотностью 1,31 г/см 3 не замерзает даже при температуре -60º С, а при плотности 1, 15 г/см 3 замерзает уже при температуре -14º С.

При приготовлении электролита аккумуляторную кислоту тонкой струей льют в воду. Если делать наоборот возможен выброс кислоты, которая может повредить кожу и одежду работающего. При разведении кислота разогревается. Для определения плотности электролита используют денсиметр (ареометр). При понижении уровня электролита в аккумуляторную батарею добавляют дистиллированную воду или электролит плотностью 1400 кг/м 3 (50 %воды и 50 % серной кислоты по массе).

Для пуска карбюраторных и дизельных двигателей при низких температурах используются пусковые жидкости «Холод Д-40» и «Арктика», состоящие в основном из этилового спирта и различных присадок. Для применения пусковых жидкостей на автомобиль монтируются специальные пусковые приспособления двух моделей 5ПП-40 и 6ПП-40. Жидкости выпускаются в запаянных ампулах

Источник

Оцените статью
Разные способы