- Бутадиен стирольный каучук способ получения
- Бутадиен-стирольные каучуки
- Из Википедии — свободной энциклопедии
- Курсовая работа: Бутадиен-стирольные каучуки, получаемые в растворе и эмульсии
- Введение
- Бутадиен-стирольные каучуки, получаемые полимеризацией в растворе
- Производство ДССК-25
- Производство ДСТ-30
- Свойства и применение бутадиен-стирольных сополимеров, получаемых полимеризацией в растворе
- Бутадиен-стирольные каучуки, получаемые полимеризацией в эмульсии
- Подготовительные операции и сополимеризация
- Дегазация латексов
- Выделение и сушка эмульсионных каучуков
- Свойства и применение бутадиен-стирольных каучуков, получаемых полимеризацией в эмульсии
Бутадиен стирольный каучук способ получения
ООО «ДомРезин»
тел.: +7 (812) 953-52-84
E-mail: domrezin@inbox.ru
г. Санкт-Петербург
БУТАДИЕН-СТИРОЛЬНЫЕ КАУЧУКИ
Среди каучуков общего назначения одно из первых мест по объему производства занимают бутадиен-стирольные и бутадиен-метилстпрольные каучуки. Это объясняется относительной доступностью исходного сырья, сравнительно простой технологией производства и высокими, качественными показателями. Бутадиен-стирольные каучуки выпускаются в широком объеме и ассортименте. В качестве исходных материалов при производстве каучуков применяются бутадиен-1,3 и стирол или альфа-метнлстирол. Каучуки получают методом эмульсионной и растворной сополимеризации. В первом случае исходные мономеры берутся в виде водной эмульсии, во втором — в виде растворов, в углеводородных растворителях.
Наряду с ненаполненными каучуками в промышленном масштабе производятся каучуки, наполненные маслом, техническим углеродом и смолами.
Бутадиен-стирольные каучуки эмульсионной полимеризации
Получение. Эти каучуки получают совместной полимеризацией бутадиена и стирола в эмульсии. Бутадиен-стирольный каучук, выпускаемый в пашей стране, сокращенно обозначается СКС, а бутадиен-метил стирольный – СКМС.
В настоящее Бремя отечественная промышленность производит эмульсионные СКС в широком ассортименте. Выпускаются каучуки:
1. не содержащие масла (безмасляные) — СКС-ЗОАРК, СКС-ЗОАРКП,
2. со средним содержанием высокоароматического масла (масляные) — СКС ЗОЛРКМ-15,
3. с высоким содержанием масла — СКС-ЗОДРКМ-27 и СКС-ЗОАНМ-27 (с парафинонафтеновым маслом и неокрашивающим противостирителем),
4. с высокими диэлектрическими свойствами — СКС-ЗОАРПД.
Первые цифры в обозначении марок каучуков показывают содержание стирола в процентах от общего содержания мономеров в исходной шихте, используемой при полимеризации.
— буква А указывает на низкотемпературную полимеризацию (около+5 °С),
— буква М обозначает, что данный каучук является маслонаполненным, содержание масла (в % от массы каучука) указывается цифрой, стоящей после буквы М,
— буква Р показывает, что полимеризация велась в присутствии регулятора,
буква К означает, что каучук получен в присутствии канифольного эмульгатора (на основе мыла диспропорцианированной канифоли),
— буквой П обозначают каучук, полученный в присутствии солей синтетических, жирных кислот, являющихся продуктами окисления парафинов.
Аналогичные по свойствам каучуки получаются при использовании альфа-метилстирола вместо стирола. К ним относятся каучуки:
— СКМС-ЗОРП — каучук, полученный горячей полимеризацией не требующий пластикации,
— морозостойкий каучук CKMC-10,
— каучук с высоким содержанием альфа-метилстирола СКМС-50П.
Для изготовления подошвенных резин в промышленности выпускают смолонаполненные бутадиен-стирольные каучуки БС-45АК и БС-45АКН (с нетемнеющим противостарителем), паронаполненный бутадиен-стирольной смолой CKC-S5. Резины на их основе имеют кожеподобные свойства и высокое сопротивление истиранию.
Процесс эмульсионной полимеризации осуществляется на непрерывно-действующей полимеризационной установке, состоящей из 8—12 полимеризаторов большой емкости, соединенных переточными трубами. Продолжительность полимеризации до 10—15 ч. Полимеризацию проводят либо при 50°С (высокотемпературная), либо при 5°С (низкотемпературная).
В конце процесса полимеризации, из полимеризатора выходит латекс, содержащий до 30- 35% полимера. В латекс вводят прерыватель, обычно неон Д, который одновременно является противостарителем (антиоксидантом), и подают на установку для дегазации, где на отгонных колоннах из него удаляют под вакуумом мономеры, не вступившие в реакцию.
Каучук из латекса выделяют коагуляцией электролитами, содержащими серную кислоту. Taк как в качестве эмульгаторов чаще всего применяют канифолевое мыло и мыло на основе синтетических жирных кислот, то одновременно с коагуляцией происходит образование свободных канифольных и жирных кислот, которые остаются в каучуке и благоприятно влияют на его технологические свойства. Для коагуляции в латекс сначала вводят раствор поваренной соли, а затем раствор серной кислоты. Последняя превращает мыла на поверхности каучуковых частиц в свободные органические кислоты и завершает коагуляцию латекса. Частицы каучука отделяют от серума, промывают и отжимают на барабанных фильтр-прессах, затем отжатый каучук дробят на молотковой дробилке, сушат полученную крошку на ленточных сушилках при 90— 10О°С, прессуют в брикеты массой 30 кг и упаковывают на машинах в полиэтиленовую пленку, а затем в четырехслойные бумажные мешки или загружают в специальные контейнеры.
Структура. СКС и СКМС, как было усыновлено методом озоционирования, имеют нерегулярную структуру: мономерные звенья в молекулярной цепи каучука расположены беспорядочно. Структурная формула является разветвленной.
Около 80% звеньев бутадиена в каучуке связаны между собой в положении 1,4 и имеют преимущественно транс- конфигурацию и около 20% звеньев — в положении 1,2. С понижением температуры полимеризации увеличивается число звеньев в положении 1,4-транс , и уменьшается разветвленность молекул, что приводит к повышению прочности и относительного удлинения каучуков низкотемпературной («холодной») полимеризации.
Средневязкостная молекулярная масса бутадиен-стирольного каучука, определенная вяскозиметрически, находится а пределах 150 000—400 000. Молекулярно-массовое распределение (ММР) каучука характеризуется максимумом в области 200 000.
При выпуске маслонаполненных каучуков применяются полимеры с более высокой молекулярной массой, чем при выпуске безмасляных каучуков. Это дает возможность в значительной степени компенсировать неблагоприятное влияние масля на прочность резины при растяжении и сохранить хорошие технологические свойства каучука.
В процессе производства каучуков применяются эмульгаторы, активаторы, регуляторы, противостарители и другие вещества, часть из которых переходит в каучук, поэтому последний всегда содержит некоторое количество примесей.
Свойства. Свойства бутадиен-стирольных и бутадиен-метилстирольных каучуков СК(М)С в значительной мере зависят от содержания в них стирола. С уменьшением содержания последнего понижается плотность, температура стеклования, улучшается морозостойкость и эластические свойства каучука, вместе с тем ухудшаются технологические свойства: шприцуемость и каландруемость резиновых смесей, увеличивается их усадка.
СК(М)С растворяются в ароматических, алифатических и галогенсодержащих углеводородах, в бензине. Они не стойки к действию смазочных материалов и различных нефтепродуктов, но достаточно стойки к действию разбавленных и концентрированных кислот, кетонов. спиртов, имеют высокую газо- и водонепроницаемость.
Под действием нагревания, кислорода, озона и света в каучуках происходят глубокие структурные изменения, в результате которых ухудшаются физико-механические свойства резин. Термоокисление при температурах 125—130 0 С сначала приводит к деструкции и понижению жесткости, при дальнейшем окислении преобладает структурирование каучука, что приводит к повышению жесткости. Каучуки обладают низкой озоностойкостью.
Благодаря наличию боковых фенильных групп эти каучуки характеризуются повышенной стойкостью к действию радиационного облучения по сравнению с другими каучуками.
Резиновые смеси на основс бутадиен-стирольных каучуков обладают невысокой клейкостью и повышенной усадкой при шприцевании и каландровании, что затрудняет проведение этих технологических процессов и сборку (клейку) заготовок изделий.
Низкотемпературные СК(М)С каучуки обладают улучшенными технологическими свойствами по сравнению с каучуками высокотемпературной полимеризации («горячими» каучуками).
Мягкие регулированные бутадиен-стирольные каучуки низкотемпературной полимеризации не пластицируют, так как они обладают достаточно высокой пластичностью, низкой вязкостью но Муни (от 40 до 60) и жесткостью по Дефо (5—8 Н или 500— 800 гс).В зависимости от вязкости по Муни каучуки низкотемпературной полимеризации в пределах каждого типа подразделяются на две группы. Каучуки второй группы имеют вязкость по Муни примерно на 10 единиц выше первой группы.
Жесткие каучуки, слабо регулированные, типа СКС-30, СКС-30А, СКС-10, СКМС-10 выпускаются в небольших количествах, с жесткостью но Дефо 20-40 Н (2000—4000 гс) подвергают термо-окислительной пластикации в котлах и воздушной среде при 130-140 0 С и давлении воздуха 0,3 МПа (3 кгс/см 2 ) в присутствии химических веществ, активирующих процесс деструкции.
Ненаполненные вулканизаты СК(М)С имеют невысокую прочность при растяжении -2-3,5 МПа (20-35 кгс/гм 2 ). Наполненные техническим углеродом (саженаполненные) вулканизаты каучука низкотемпературной полимеризации, не содержащего масел, типа СКС-ЗОАРК обладают высокой прочностью — до 32 МПа (320 кгс/см 2 ) при относительном удлинении 600%. С уменьшением содержания связанного стирола в каучуке прочность при растяжении, сопротивление раздиру и истиранию снижаются, возрастают эластичность по отскоку и морозостойкость.
Наполненные техническим углеродом (саженаполненные) вулканизаты бутадиен-стирольных [альфа-метилстиролыных) каучуков превосходят по стойкости к тепловому и естественному старению и по износостойкости вулканизаты натурального каучука, но уступают им по эластичности, теплообразованию при многократных деформациях, теплостойкости.
Вулканизаты достаточно стоики к действию разбавленных и концентрированных кислот и щелочей, спиртов, кетонов, эфиров. Они набухают в растворителях каучука, минеральных маслах, растительных и животных жирах.
По газопроницаемости и диэлектрическим свойствам вулканизаты этих каучуков практически равноценны вулканизатам НК.
Применение. Каучуки СК(М)С применяются в шинном производстве, в производстве различных формовых и неформовых изделий: рукавов, транспортерных лент, резиновой обуви и др. Вследствие радиационной стойкости эти каучуки применяются в производстве резин, стойких к гамма-излучениям,
В производстве изделий с повышенной морозостойкостью применяются СК(М)С с низким содержанием стирола (метил-стирола):СКС-10,СКМС-10.
Бутадиен-стирольные каучуки растворной полимеризации (ДССК)
Отечественная промышленность выпускает бутадиен-стирольные каучуки растворной полимеризации с различным содержанием стирола: ДССК-10, ДССК -18, ДССК -25, ДССК -50, ДССК-25Д (с повышенными диэлектрическими свойствами); каучук, содержащий микроблоки стирола и предназначенный для переработки литьем — ДССК-25ЛН; маслонаполненные каучуки растворной полимеризации, содержащие 15 и 27% масла — ДССК-25М-15 и ДССК-25М-27.
Растворная полимеризация в присутствии литийорганических катализаторов позволяет регулировать основные параметры молекулярной структуры: молекулярную массу, молекулярно-массовое распределение, разветвленность цепей и макроструктуру.
Отличительными особенностями этих каучуков является высокое содержание полимера (97 — 98%) и низкое содержание примесей, более высокое содержание звеньев бутадиена в положении 1,4-цис и меньшее в положении 1,2, узкое молекулярно-массовое распределение, более линейное строение молекулярных цепей по сравнению с эмульсионными бутадиен-сти рольными каучуками.
ДССК превосходят эмульсионные каучуки по пластичности, морозостойкости, износостойкости, динамической выносливости и сопротивлению разрастания трещин. Они имеют значительно меньшую усадку, большую вязкость по Муни вследствие более линейной структуры макромолекул и могут наполняться значительно большим количеством технического углерода (сажи) и масла без заметного ухудшения физико-механических свойств вулканизатов. Имеется также ряд технологических преимуществ при изготовлении растворных каучуков по сравнению с эмульсионными, но вместе с тем повышаются требования к чистоте исходных мономеров. Применяются каучуки растворной полимеризации в шинной промышленности, для изготовления транспортерных лент, подошв обуви, рукавов и других резиновых технических изделий.
Источник
Бутадиен-стирольные каучуки
Из Википедии — свободной энциклопедии
Бутадиен-стирольные каучуки — группа продуктов сополимеризации бутадиена −1,3 и стирола или метилстирола наиболее распространенный тип каучуков общего назначения, синтез которых осуществляется в эмульсии по свободно-радикальному механизму. СКС («синтетический каучук стирольный») относятся к некристаллизирующимся сополимерам нерегулярного строения со статистическим распределением мономерных звеньев. Около 30 % звеньев стирола изолированы, примерно 40 % расположены попарно. 80 % бутадиеновых звеньев полимерной цепи имеют присоединение в положении 1,4, главным образом в транс-форме (около 70 %), около 20 % присоединены в положение 1,2. Разновидностью бутадиен-стирольных каучуков являются бутадиен-а-метилстирольные каучуки (СКМС), характеризующиеся близкими структурой и свойствами.
Широкое распространение СКС объясняется высокими техническими свойствами резины на их основе, пригодностью их для производства шин и других резиновых изделий высокого качества и доступностью мономеров. Промышленный выпуск и потребление бутадиен-стирольных каучуков достигли очень больших размеров.
Источник
Курсовая работа: Бутадиен-стирольные каучуки, получаемые в растворе и эмульсии
Название: Бутадиен-стирольные каучуки, получаемые в растворе и эмульсии Раздел: Рефераты по химии Тип: курсовая работа Добавлен 14:36:56 12 декабря 2010 Похожие работы Просмотров: 6861 Комментариев: 23 Оценило: 6 человек Средний балл: 4.8 Оценка: 5 Скачать | ||||||||||||||||||||||||||||||||||||||||||||
Стирол | 6 |
Бутадиен | 14 |
Растворитель | 80 |
Процесс полимеризации ведут при заданной температуре до полной конверсии стирола; для отвода теплоты, выделяющейся при реакции, в рубашку полимеризатора подается охлаждающая вода. Перед подачей бутадиена снижают температуру в полимеризаторе до 35 °С, после чего дозируют бутадиен с такой скоростью, чтобы температура не поднималась выше 60 °С. При достижении конверсии бутадиена не менее 90% в полимеризатор подают оставшуюся половину стирола и продолжают полимеризацию. Для достижения полной конверсии мономеров температуру в реакторе повышают и проводят дополимеризацию. Первая стадия полимеризации протекает при 40–45 °С в течение 1 ч, вторая стадия – при 50 – 60 °С в течение 5 ч, третья стадия – при 70–80 °С в течение 1 ч. По окончании процесса полимеризации раствор полимера насосом 17 через фильтр 18 подается на смешение с раствором стабилизатора, который готовится в аппарате 25 и дозируется из расчета 0,7 ч. (масс.) на 100 ч. (масс.) полимера в интенсивный смеситель 19. Заправленный стабилизатором полимеризат поступает в усреднитель 21, откуда насосом 22 направляется на выделение.
Рис. 3. Схема безводной дегазации, гранулирования и упаковки каучука при получении ДСТ-30 [4];
1 – концентратор; 2 – безводный дегазатор; 3,5 – червячные прессы; 4 – шнековый транспортер; 6 – вибросито; 7 – виброподъемннк; 8 – дозирующее устройство; 9 – калорифер; 10, 12 – сепараторы; 11, 13 – конденсаторы; 14 – сборник растворителя; 16 – насос.
I– полимеризат; II– пар; III– вода охлажденная; IV– растворитель в рецикл- V– каучук на упаковку; VI– воздух.
Выделение каучука осуществляется безводной дегазацией (рис. 3), позволяющей исключить из процесса стадию регенерации растворителя. Полимеризат, содержащий 20% сополимера, поступает в горизонтальный концентратор 1, обогреваемый через рубашку паром и снабженный перемешивающим устройством. Упаренный полимеризат, содержащий не менее 26% полимера, стекает в двухвалковый дегазатор 2, состоящий из двух камер – верхней (приемной) и нижней, где происходит окончательная дегазация полимера на поверхности рабочих валков; валки обогреваются паром давлением 0,9 МПа. Раствор полимера, попадая на горячие валки, равномерно распределяется по всей их длине. В верхней камере дегазатора происходит первичное удаление растворителя, пары которого поступают в сепаратор 10, объединяясь с парами, отходящими из концентратора 1. Возвратные продукты конденсируются в конденсаторе 11, охлаждаемом промышленной водой, несконденсированные пары после отделения от конденсата в сепараторе 12 поступают вконденсатор 13, охлаждаемый охлажденной водой. Несконденсированные продукты направляются на абсорбцию, а конденсат стекает в сборник 14, откуда насосом 15 направляется в отделение полимеризации на приготовление шихты.
Пленка каучука выводится из дегазатора через зазор между рабочим и уплотнительным валками, снимается ножами и собирается вбункере. Для предотвращения утечки паров растворителя в помещение цеха на уплотнительные поверхности подается азот давлением 0,13 МПа.
Каучук из бункера дегазатора 2 поступает в червячный пресс 3, гомогенизируется и шнековым транспортером 4 подается в червячный пресс 5, снабженный гранулятором, который позволяет получать гранулы размером 5x5x5 мм при температуре на выходе из фильер 150–180 °С. При необходимости для достижения заданной температуры в рубашку гранулятора подается пар давлением 1,85 МПа или вода. На выходе из гранулятора каучук охлаждается фузельной водой, которая отделяется на вибросите 6 и направляется на очистку, а гранулы поступают на виброподъемник 7, где вода с поверхности гранул удаляется подогретым воздухом. Гранулы через автоматические весы засыпаются в бумажные мешки и по конвейеру направляются на склад готовой продукции.
Недостатком этого способа являются значительные потери энергоресурсов, в частности электроэнергии, потребляемой двигателями каждого насоса для подачи раствора полимера на соответствующую систему дегазации каучука, сложность регулирования давления в линии подачи раствора полимера путем сброса на всас насоса, что способствует увеличению удельных расходов электроэнергии, неудовлетворительный фракционный состав крошки каучука, а также потери мелкой крошки каучука с избытком циркуляционной воды
В патенте [5] предлагается способ получения каучуков растворной полимеризацией, включающий полимеризацию мономеров, дезактивацию катализатора, водную отмывку от остатков катализатора и стабилизацию полимера антиоксидантом, усреднение раствора полимера, эмульгирование усредненного раствора полимера горячей циркуляционной водой и обработку острым водяным паром, водную дегазацию в двух и более системах дегазации, концентрирование и сушку каучука в червячно-отжимных сушильных агрегатах или воздушных сушилках, заключающийся в том, что раствор полимера из усреднителей направляют в первый общий коллектор и выводят на предварительное эмульгирование горячей циркуляционной водой, подаваемой в количестве 5–25% от объема раствора полимера в линию всаса насосов, повышают давление до 1,0–1,3 МПа, выводят во второй общий коллектор и подают на окончательное эмульгирование раствора полимера горячей циркуляционной водой и обработку острым водяным паром, затем на каждую из систем водной дегазации избыток горячей циркуляционной воды, выводимой из концентраторов крошки каучука, направляют на очистку от мелкой крошки каучука с дальнейшим использованием ее в производстве.
В качестве горячей циркуляционной воды на предварительное эмульгирование раствора полимера при необходимости используют водный конденсат паров дегазации с температурой 60–75 °С или смесь горячей циркуляционной воды, выводимой из концентраторов крошки каучука, и водного конденсата паров дегазации [5].
Свойства и применение бутадиен-стирольных сополимеров, получаемых полимеризацией в растворе
Статистические сополимеры бутадиена со стиролом типа ДССК-25 рассматриваются как каучуки, способные заменять эмульсионные бутадиен-стирольные сополимеры в резиновых смесях для шин, электроизоляции, обуви и других изделий.
Сравнительные свойства растворных бутадиен-стирольных каучуков и каучуков, получаемых эмульсионной полимеризацией (типа СКС-30 АРК), приводятся ниже [4]:
По комплексу других физических и химических свойств эти каучуки близки друг к другу. Наиболее ценными свойствами растворных каучуков являются: низкое содержание примесей; узкое молекулярно-массовое распределение, что обеспечивает лучшие динамические свойства резин; низкая усадка резиновых смесей; более высокая износостойкость и отличная морозостойкость.
Блоксополимеры полистирол-полибутадиен-полистирол при содержании стирола в концевом блоке свыше 10% имеют в интервале температур от –60 до +60 °С свойства вулканизованных резин (высокое относительное удлинение, высокая упругость, хорошее сопротивление разрыву) и относятся к новому классу эластомеров – термоэластопластам. С другой стороны, им присущи свойства термопластов и при температурах 150–220 °С они могут перерабатываться шприцеванием и литьем под давлением. При понижении температуры свойства термоэластопластов восстанавливаются, тем самым обеспечивается возможность многократной переработки отходов производства и утилизации изделий, отслуживших свой срок.
Термоэластопласты обладают высокой стойкостью к воде, едкому натру, кислотам, аммиаку, спиртам, ограниченно стойки к маслам и не стойки к ацетону, бензину, толуолу, этилацетату. Они отличаются высокой износостойкостью, не проводят электричества, их морозостойкость находится на уровне вулканизатов натурального каучука, а стойкость к озону и УФ-облучению – на уровне вулканизатов бутадиен-стирольных эмульсионных каучуков. Термоэластопласты хорошо совмещаются с натуральным каучуком, СКИ-3, бутадиен-стирольными каучуками, смолами и наполнителями, легко окрашиваются в любой цвет.
Кроме ДССК-25 в нашей стране производят статистические сополимеры бутадиена со стиролом ДССК-10, ДССК-18, ДССК-45, ДССК-65, ДССК-85, отличающиеся содержанием связанного стирола.
Наряду с ДСТ-30 выпускаются бутадиен-стирольные (ДСТ-50, ДСТ-80) и изопрен-стирольные (ИСТ-17, ИСТ-25, ИСТ-50) термоэластопласты, отличающиеся содержанием связанного стирола в полистирольных блоках.
Бутадиен-стирольные статистические каучуки типа ДССК-25 относятся к каучукам общего назначения. По сравнению с эмульсионными аналогами они дают в протекторах повышенное сопротивление растрескиванию, лучшее сцепление с мокрой дорогой, пониженное теплообразование и повышенную эластичность. Хорошая текучесть и шприцуемость позволяет использовать эти каучуки для производства обуви, шприцованных изделий и покрытий для полов.
Бутадиен-стирольные термоэластопласты типа ДСТ-30 используются для изготовления товаров народного потребления: пленочных материалов для упаковки пищевых продуктов, уплотнителей холодильников, масок, ластов, мячей, игрушек, спортивной обуви и других изделий. Их применяют также в дорожных покрытиях, в производстве стройматериалов, в составах для покрытия полов и пропитки бумаги, в клеевых составах и др [6].
Бутадиен-стирольные каучуки, получаемые полимеризацией в эмульсии
Сополимеризацию бутадиена со стиролом проводят в водных эмульсиях, образование полимера протекает по механизму радикальной полимеризации. Основное количество бутадиен-стирольных каучуков производят при 5 °С (низкотемпературные каучуки), некоторые марки получают при 50 °С (высокотемпературные каучуки). Требования к чистоте мономеров приведены ниже, % (масс) [4]:
Высокотемпературные бутадиен-стирольные каучуки получают с применением в качестве инициатора персульфата калия, для регулирования молекулярной массы используют диизопропилксантогендисульфид (дипроксид), который вводят в систему в несколько приемов; или трет -додецилмеркаптан, который вводят в начале процесса. В качестве эмульгатора применяют смесь натриевых солей дибутилнафталинсульфокислоты (некаль) и синтетических жирных кислот С10 –С16 или калиевую соль жирных кислот. Массовое соотношение мономеры: вода = 100: 125. Полимеризацию проводят до конверсии 60%, в качестве стоппера используют нафтам-2, одновременно являющийся стабилизатором каучука, диметилдитиокарбамат натрия или древесно-смоляной антиполимеризатор.
Низкотемпературные бутадиен-стирольные каучуки получают с применением в качестве инициатора полимеризации окислительно-восстановительных систем. В настоящее время за рубежом наиболее распространена необратимая железопирофосфатная система (инициатор – гидропероксид п -ментана, активатор – пирофосфатный комплекс двухвалентного железа) с добавкой небольших количеств этилендиаминтетраацетата натрия (трилон Б), образующего комплекс с трехвалентным железом. В отечественной промышленности низкотемпературные бутадиен-стирольные каучуки получают с использованием гидропероксидов изопропилбензола и изопропилциклогексилбензола. В качестве регулятора молекулярной массы применяют т pe т -додецилмеркаптан. Для создания и стабилизации эмульсии мономеров в воде используют эмульгаторы – калиевые мыла высших жирных кислот или диспропорционированной канифоли. Вспомогательными компонентами полимеризации являются: электролиты (тринатрийфосфат и хлорид калия), способствующие поддержанию заданного рН системы и понижению вязкости латекса, и вещества, повышающие стабильность латекса (натриевая или калиевая соль продукта конденсации формальдегида с нафталинсульфокислотой или алкилнафталинсульфокислотой – лейканол, даксад). Для прекращения полимеризации при достижении заданной конверсии в систему вводят стоппер – диметилдитиокарбамат натрия. Массовое соотношение мономеры: вода = = 100: (185÷250); конверсия 60%. В последнее время конверсия при получении бутадиен-стирольных каучуков низкотемпературной полимеризации доводится до 70%. Чтобы при этом не ухудшались свойства товарного каучука, прибегают к более глубокому регулированию молекулярной массы сополимеров, а для сохранения высоких скоростей процесса при глубокой конверсии рекомендуется использовать более активные инициирующие системы.
Соотношение мономеров и состав шихты для получения бутадиен-стирольных каучуков определяются маркой выпускаемого каучука.
Технологический процесс получения бутадиен-стирольных каучуков, осуществляемый по непрерывной схеме, состоит из следующих стадий:
1. приготовление углеводородной и водной фаз;
2. приготовление растворов инициатора, активатора, регулятора и стоппера и дисперсии антиоксиданта;
3. полимеризация и ее обрыв;
4. отгонка незаполимеризовавшихся мономеров из латекса; выделение и сушка каучука.
Подготовительные операции и сополимеризация
Схема установки для получения низкотемпературных бутадиен-стирольных каучуков непрерывной полимеризацией в эмульсии показана на рис. 4. Водная фаза, включающая раствор основного эмульгатора, электролита и второго эмульгатора (лейканола), готовится в аппарате 1 смешением указанных компонентов, дозируемых в соответствии с заданной рецептурой, и имеет рН 10–11. Готовая водная фаза насосом 2 через холодильник 3, охлаждаемый рассолом, подается на смешение с углеводородной фазой в диафрагмовый смеситель 6.
Рис. 4. Схема полимеризации при получении низкотемпературных бутадиен-стирольных эмульсионных каучуков [4]:
1 – емкость для приготовления водной фазы, 2, 7, 9, 11, 13, 15 – насосы; 3, 5 – холодильники; 4, 6 – диафрагмовые смесители; 8, 10, 12, 14 – аппараты для приготовления компонентов; 161 –1612 – полимеризаторы; 17 – фильтр.
I – бутадиен; II – стирол; III – умягченная вода; IV – эмульгаторы; V – инициатор; VI – комплекс железа; VII – ронгалит; VIII – регулятор молекулярной массы; IX – стоппер; X – рассол; XI – латекс на дегазацию.
Углеводородная фаза готовится непрерывным смешением бутадиена и стирола, подаваемых в заданном соотношении дозировочными насосами в диафрагмовый смеситель 4, охлаждается в рассольном холодильнике 5 , смешивается с водной фазой в диафрагмовом смесителе 6, после чего насосом 7 подается в первый по ходу аппарат батареи полимеризаторов, состоящей, как правило, из 12 стандартных полимеризаторов объемом 12 или 20 м 3 . Эмульсия инициатора готовится в аппарате 8 из умягченной воды, инициатора и эмульгатора, дозируемых из соответствующих мерников, и насосом 9 подается на смешение с эмульсией углеводородов в воде в линию шихты перед первым полимеризатором 16.
Регулятор молекулярной массы каучука (трет -додецилмеркаптан) применяется в виде раствора в стироле. Комплекс железа готовится в отсутствие воздуха в виде тонкой взвеси в воде при нагревании смеси растворов пирофосфата калия и сульфата железа (II) при перемешивании или в виде раствора омылением этилендиаминтетрауксусной кислоты едким калием с последующим взаимодействием образовавшейся соли с рассчитанным количеством сульфата железа (II). Ронгалит растворяется в воде при перемешивании. Приготовленные в соответствии с рецептом полимеризации растворы подаются на смешение в линию шихты перед первым полимеризатором. Все растворы исходных компонентов готовятся и хранятся в атмосфере азота.
Полимеризаторы в батарее соединены так, что полимеризуемая шихта поступает в нижнюю часть аппарата через сифон и направляется в следующий аппарат из верха. Полимеризатор представляет собой автоклав с рубашкой и встроенными пучками труб, через которые рассолом отводится теплота, выделяющаяся при полимеризации. Аппарат имеет мешалку рамного типа. Все полимеризаторы (аппараты 161 –1612 ) связаны между собой тремя линиями: по одной из них – основной – продукт передается из одного аппарата в другой, вторая – шунтовая линия – предназначена для вывода любого аппарата в случае отключения его из батареи на ремонт и чистку, третья – разгрузочная – служит для разгрузки выключенного из работы полимеризатора. Обычно в работе находится 10–11 полимеризаторов.
При достижении конверсии мономеров 60–70% (время полимеризации обычно 10–11 ч) в латекс вводят 1%-ный водный раствор стоппера – диметилдитиокарбамата натрия. Стоппер подается в линию латекса после последнего по ходу полимеризатора, затем латекс проходит через фильтр 17, где отделяются твердые включения, и поступает на дегазацию. При необходимости одновременно со стоппером в латекс вводят антиоксидант.
По аналогичной схеме получают высокотемпературные каучуки. Основные отличия при этом связаны с меньшим числом компонентов, используемых при получении высокотемпературных каучуков, отсутствием встроенных поверхностей или дополнительного теплосъема, использованием промышленной воды в качестве теплоносителя для отвода теплоты, выделяющейся при сополимеризации. Для инициирования полимеризации в рубашку первого по ходу процесса полимеризатора подают горячую воду, при этом шихта в аппарате подогревается до 50 °С; в охлаждающие устройства последующих аппаратов подают холодную воду.
Дегазация латексов
Дегазация низкотемпературных латексов осуществляется по схеме, приведенной на рис. 5. Латекс из батареи полимеризаторов поступает в промежуточную емкость 1, снабженную рамной мешалкой, откуда насосом 2 через фильтр 3 подается в колонну предварительной дегазации 4, работающую в режиме прямотока латекс – пар давлением 0,6 МПа. В колонне 4 удаляется основная масса не-прореагировавшего бутадиена, который через сепаратор 6 направляется на выделение и регенерацию, а частично дегазированный латекс насосом 5 подается в верхнюю часть дегазационной колонны первой ступени 7, где окончательно удаляется из латекса бутадиен и отгоняется основная масса стирола. Для окончательного удаления стирола латекс из куба колонны 7 насосом 8 подается в колонну второй ступени дегазации 9. Дегазированный латекс, содержащий менее 0,3% (масс.) стирола, выводится из куба колонны 9 через гидрозатвор 10 и насосом 11 откачивается на выделение каучука. Отгоняемые в колоннах 7 и 9 углеводороды поступают в сепаратор 12, где отделяются от захваченных частиц каучука, возвращаемых в нижнюю часть колонны 9, и далее в систему конденсации, состоящую из двух последовательно соединенных конденсаторов, которые охлаждаются промышленной (аппарат 13) и охлажденной (аппарат 14 ) водой. Сконденсированные продукты (стирол и вода) через гидрозатвор 15 насосом 16 подаются в отстойник 17 , а несконденсированные (бутадиен) вместе с газообразными веществами из колонны 4 подаются на разделение и регенерацию. Углеводородный слой из отстойника 17 поступает на очистку от примесей, а нижний водный слой сливается и направляется на очистку.
Колонны дегазации, работающие при прямотоке греющий пар – латекс, имеют пакетную насадку диск-кольцо, скорость прохождения латекса через колонну регулируется шиберами.
Рис. 5. Схема дегазации латекса с предварительной отгонкой мономеров [4]:
1 – промежуточная емкость; 2, 5, 8, 11, 16 – насосы; 3 – фильтр; 4 – колонна предварительной дегазации; 6, 12 – сепараторы; 7 – дегазатор первой ступени; 9 – дегазатор второй ступени; 10, 15 – гидрозатворы; 13, 14 – конденсаторы; 17 – отстойник.
I – латекс из полимеризаторов; II – пар; III – углеводороды на компремирование; IV – углеводороды на осушку; V – вода на отпарку органических соединений; VI – латекс на выделение; VII – охлажденная вода.
Предварительная отгонка бутадиена может быть осуществлена в промежуточной емкости 1 , которая в этом случае для подогрева латекса глухим паром снабжается рубашкой.
Дегазация высокотемпературных латексов осуществляется в двухступенчатом отгонном агрегате при температуре около 80 °С и остаточном давлении 52 кПа.
С целью уменьшения содержания стирола в латексе, сокращения удельного расхода водяного пара и увеличения межремонтного пробега оборудования используют противоточную дегазацию латекса. Одним из условий, определяющих стабильную работу противоточных колонн, является тщательная предварительная отгонка бутадиена из латекса. Содержание бутадиена не должно превышать 0,2% (масс.), в противном случае возможно снижение вакуума в колонне и повышенное пенообразование на тарелках. Наилучшие результаты достигаются при использовании для отгонки бутадиена трех колонн с насадкой диск-кольцо, работающих в режиме прямотока. Отгонка стирола осуществляется в колоннах с ситчатыми тарелками и переливными стаканами. Для предотвращения пенообразования на тарелках противоточной колонны в латекс вводится пеногаситель на основе полиметилсилоксана.
Схема противоточной дегазации латекса представлена на рис. 6. Латекс из батареи полимеризаторов поступает в промежуточную емкость 1, снабженную рамной мешалкой, откуда насосом 2 через фильтр 3 подается в колонну предварительной дегазации 4, работающую под давлением в режиме прямотока латекс – пар давлением 0,6 МПа. В колонне 4 удаляется основная масса бутадиена, который через сепаратор 15 направляется на компремирование, выделение и регенерацию, а латекс из куба колонны 4 насосом 5 подается в колонну 6 и далее насосом 7 на окончательную отгонку бутадиена в колонну 8. Колонны 6 и 8 работают под вакуумом, при прямотоке латекса и пара. Бутадиен, отгоняемый в колоннах 6 и 8, отделяется от увлеченных капель латекса в сепараторе 16 и направляется на компремирование.
Из куба колонны 8 насосом 9 латекс подается в колонну 10, работающую в режиме противотока. Для предотвращения пенообразования в линию латекса подается пеногаситель. Пар подступает под нижние ситчатые тарелки дегазационных частей колонн 10 и 12. Окончательная дегазация латекса происходит в колонне 12. Пары углеводородов из верха колонн 10 и 12 подаются в сепаратор 17, где отделяется латекс, увлекаемый парами. Латекс возвращается в кубовую часть колонны 12, а углеводороды конденсируются в конденсаторе 18, охлаждаемом промышленной водой, и в конденсаторе 19, охлаждаемом охлажденной водой.
Несконденсировавшиеся продукты направляются на компримирование, а конденсат сливается в гидрозатвор 20, откуда насосом 21 направляется в отстойник 22.
Рис. 6. Схема противоточной дегазации латекса [4]:
1 – емкость с мешалкой; 2, 5, 7, 9, 11, 14, 21 – насосы; 3 – фильтр; 4, 6, 8, 10, 12 – дегазационные колонны; 13, 20 – гидрозатворы; 15, 16, 17 – сепараторы; 18, 19 – конденсаторы; 22 – отстойник.
I – латекс на дегазацию; II – пар; III – пеногаситель; IV – бутадиен на компремирование; V – латекс иа выделение каучука; VI – углеводороды на очистку; VII – вода на отпарку органических соединений; VIII – охлажденная вода.
Верхний углеводородный слой из отстойника 22 направляется на регенерацию, а нижний водный слой – на очистку от органических продуктов. Дегазированный латекс из куба колонны 12 через гидрозатвор 13 насосом 14 откачивается на выделение каучука из латекса.
Выделение и сушка эмульсионных каучуков
При получении маслонаполненных каучуков, содержащих 17 или 37 ч. (масс.) минерального масла ПН-6 или МИНХ-1 на 100 ч. (масс.) каучука, дегазированный латекс смешивается с эмульсией масла, одновременно в латекс вводится дисперсия стабилизатора, после чего смесь поступает на выделение каучука в виде крошки (рис. 7). Латекс, заправленный маслом, усредняется в емкости 1, имеющей рамную мешалку, насосом 2 через фильтр 3 подается в смеситель 4 на смешение с 25%-ным раствором хлорида натрия и серумом, подаваемым из сборника 14 насосом 13. Смесь поступает в аппараты коагуляции 5 и 6, в нижнюю часть которых подается серум, подкисленный 1–2%-ным раствором серной кислоты. Хлорид натрия вызывает агломерацию полимерных частиц в латексе, а серная кислота переводит молекулы эмульгатора, стабилизирующие латексные частицы от самослипания, в свободные карбоновые кислоты и вызывает тем самым коагуляцию полимерных частиц с образованием пористой крошки каучука.
Водная суспензия крошки каучука поступает на вибросито 7, где каучук отделяется от серума (вода, содержащая свободные карбоновые кислоты, хлорид натрия, серную кислоту и др.), который собирается в сборнике 14 и возвращается в аппараты коагуляции насосом 13. Крошка каучука в промывной емкости 8 отмывается водой от свободных карбоновых кислот и электролита, после чего пульпа поступает на барабанный вакуум-фильтр 9, куда одновременно подается промывная вода, для окончательного удаления растворимых примесей. Каучук в виде шкурки поступает в молотковую дробилку 10, образующаяся крошка каучука пневматическим транспортером подается в сушилку 11, а вода отсасывается вакуум-насосом 16 через вакуум-ресивер 15 и сбрасывается в канализацию. Каучук сушится горячим воздухом в многоходовой конвейерной сушилке 11 при температуре не выше 105 °С до содержания влаги менее 0,5% (масс). Высушенный каучук охлаждается до 40 °С в нижней зоне сушилки 11 иковшовым элеватором 12 подается на брикетирование и упаковку. Каучук упаковывают в брикеты массой 30 кг. Брикеты упаковываются в полиэтиленовую пленку и укладываются в четырехслойный бумажный мешок [7].
Рис. 7. Схема выделения и сушки маслонаполненных эмульсионных каучуков [4]:
1 – усреднитель; 2, 13 – насосы; 3 – фильтр; 4 – смеситель; 5,6 – аппараты коагуляции; 7 – вибросито, 8 – промывная емкость; 9 – барабанный вакуум-фильтр; 10 – молотковая дробилка; 11 – многоходовая конвейерная сушилка; 12 – ковшовый элеватор; 14 – сборник серума; 15 – вакуум-ресивер, 16 – вакуум-насос.
I – латекс; II – раствор хлорида натрия; III – раствор серной кислоты; IV – вода; V – вода на очистку от примесей; VI – каучук на брикетирование и упаковку.
Рис. 8. Схема выделения и сушки эмульсионных каучуков в виде ленты [4]:
1 – усреднитель; 2, 16, 18 – насосы; 3 – фильтр; 4,5,6 – аппараты коагуляции; 7 – лентоотливочная машина; 8 – приемный ящик; 9 – равнительные валки; 10 – вакуум-коробки; 11 – рифлительные валки; 12 – ленточная многоходовая сушилка; 13 – пудровочная машина; 14 – намоточный станок; 15 – сборник серума; 17 – сборник воды.
I – латекс; II – раствор хлорида натрия; III – раствор серной кислоты; IV – вода иа очистку от примесей; V – умягченная вода; VI – к линии вакуума; VII – каучук на упаковку.
Высокотемпературные каучуки выделяют и сушат в виде ленты по схеме, приведенной на рис. 8. Дегазированный латекс из усреднителя 1 насосом 2 через фильтр 3 подается на каскад коагуляции (аппараты 4, 5, 6), каучук выделяется из латекса растворами хлорида натрия и серной кислоты. Промывка каучука и формование ленты осуществляются на лентоотливочной машине 7. Для этого пульпа каучука с каскада коагуляции поступает в приемный ящик лентоотливочной машины 8, откуда крошка каучука захватывается движущейся перфорированной лентой. Крошка каучука разравнивается по всей ширине ленты и уплотняется валками 9, промывается обратной и свежей умягченной водой для удаления электролитов. Вода удаляется из ленты каучука на вакуум-коробках 10, после чего лента проходит через рифлительные валки 11 и поступает на сушку в многоходовую конвейерную сушилку 12, обогреваемую горячим воздухом с максимальной температурой 140 °С. Затем лента каучука охлаждается до 40 °С в нижней зоне сушилки, опудривается тальком на пудровочной машине 13, наматывается в рулоны на намоточном станке 14, упаковывается в мешки, маркируется и направляется на склад.
Вода, отходящая из первой зоны лентоотливочной машины, собирается в сборнике 15, откуда насосом 16 подается на каскад коагуляции; вода, отходящая из второй зоны лентоотливочной машины, выводится на очистку; вода, отходящая из третьей зоны лентоотливочной машины, собирается в cборнике 17, откуда насосом 18 подается в качестве промывной воды на лентоотливочную машину.
Для выделения каучука из латексов, содержащих некаль, используют систему трубопроводов, в которых смешиваются потоки латекса и коагулирующих агентов – хлорида кальция и уксусной кислоты.
Параметры коагуляции (расход электролитов, рН среды) зависят от типа эмульгаторов, способа выделения и сушки каучука. Так, низкотемпературные бутадиен-стирольные каучуки, полученные с применением мыл диспропорционированной канифоли и жирных кислот, выделяют при 50 °С в виде крошки с помощью электролитов (хлорида натрия и серной кислоты), при рН среды 2,5–3,5 в присутствии небольших добавок костного клея или в виде ленты при рН среды 7,2–8,5 без костного клея теми же электролитами.
Рис. 9. Схема получения сажемаслонаполненных эмульсионных каучуков [4]:
1 – емкость для масла; 2 – емкость для эмульгатора; 3 – емкость для латекса; 4 – бункер; 5 – смеситель; 6 – диспергатор; 7, 8, 9 – аппараты коагуляции; 10, 12 – вибросита; 11 – аппарат для промывки пульпы; 13 – молотковая дробилка; 14, 15, 17, 18 – насосы; 16 – емкость для электролита; 19 – сборник серума.
I – технический углерод; II – вода; III – углеводородное масло; IV – эмульгатор; V – латекс; VI – электролит; VII – умягченная вода; VIII – каучук на сушку; IX – вода на очистку.
Выпускаемые за рубежом сажемаслонаполненные бутадиен-стирольные каучуки получают по схеме, представленной на рис. 10. В емкости 1 с мешалкой и рубашкой, в которую подается водяной пар, минеральное масло подогревается для снижения вязкости. Одновременно готовится грубая дисперсия технического углерода, для чего в смеситель 5 дозируются необходимые количества умягченной воды и технического углерода из бункера 4 при включенной мешалке и циркуляции дисгшрсии с помощью насоса 14. Дисперсия технического углерода из смесителя 5, подогретое масло из емкости 1 иэмульгатор из емкости 2 гомогенизируются в аппарате 6, после чего смесь насосом 15 направляется в первый аппарат каскада коагуляции 7 на смешение с латексом, подаваемым из мерника 3. Латекс, заправленный эмульсией технического углерода и масла, поступает на коагуляцию в нижнюю часть аппарата 8, куда одновременно из емкости 16 насосом 17 подается электролит – раствор серной кислоты. Формование мелкозернистой крошки заканчивается в аппарате 9, куда из сборника 19 насосом 18 подается серум. Крошка каучука промывается на вибросите 10, отделяемая вода собирается в сборнике 19. Далее крошка промывается водой в аппарате с мешалкой 11, отделяется от воды на вибросите 12, поступает в молотковую дробилку 13 и направляется на сушку и упаковку.
Дисперсию технического углерода можно приготовить и без эмульгатора. В этом случае используют аппараты, обеспечивающие интенсивное смешение технического углерода с водой без поверхностно-активных веществ (пароструйные эжекторы, струйно-вибрационные мельницы, механические устройства, обеспечивающие высокие сдвиговые усилия, форсунки высокого давления и др.).
Свойства и применение бутадиен-стирольных каучуков, получаемых полимеризацией в эмульсии
Макромолекула бутадиен-стирольных каучуков, получаемых эмульсионной полимеризацией, характеризуется наличием следующих структур:
Около 80% звеньев бутадиена присоединены в положение 1,4-, около 20% – в положение 1,2– Относительное содержание 1,4-цис- и 1,4-транс -звеньев зависит от температуры полимеризации:
Звенья стирола распределены в макромолекуле нерегулярно.
Бутадиен-стирольные каучуки относятся к аморфным некристаллизующимся полимерам. Ниже приведены их физико-химические свойства [4]:
Таблица 1. Основные требования, предъявляемые к каучукам по ГОСТ 11138–78 [3]
Бутадиен-стирольные каучуки растворяются в ароматических и алифатических углеводородах, не стойки к действию смазочных масел, однако достаточно стойки к действию разбавленных кислот и полярных углеводородов, стойки к действию воды. Воздействие теплоты, кислорода, озона и света вызывает глубокие структурные изменения: на ранних стадиях преобладают процессы деструкции, а с развитием термического окисления – процессы структурирования. Каучуки, заправленные стабилизаторами, не изменяют свойств при хранении в течение двух и более лет.
В СССР и России выпускаются следующие марки каучуков (в том числе и α-метилстирольные):
Высокотемпературные: СКМС-10, СКМС-50, СКМС-ЗОРП, БС-45АК
Низкотемпературные: СКС-30 АРКП, СКС-30 АРПД, СКМС-30 АРК, СКМС-30 АРКМ-15, СКМС-30 АРКМ-27, СКС-30 АР КМ-15.
На предприятии ОАО «Воронежсинтезкаучук» выпускаются бутадиен-стирольные синтетические каучуки СКС-30 АРКМ-15 (ГОСТ 11138–78, ТУ 38.403121–98), СКС-30 АРКПН (ТУ 38.40384–99), СКС-30 АРКМ-27 (ТУ 38.303–03070–2001), СКС-30 АРК (ТУ 38.40355–99) [7].
Эти каучукине требуют специальной пластикации. Они хорошо смешиваются с различными ингредиентами резиновых смесей, а также хорошо совмещаются с другими типами каучуков общего назначения (полибутадиеновыми, полиизопреновыми). Они используются в шинной промышленности для приготовления протекторов и других деталей шин.
Таблица 2. Технические показатели каучука СКС-30 АРК, выпускаемого ОАО «Воронежсинтезкаучук» [7]
Наименование показателя | СКС(СКМС) – 30 АРК | |
1 сорт | 2 сорт | |
Вязкость по Муни, МБ 1÷4 (100 °С) | 45–57 | 46–57 |
Разброс по вязкости внутри партии, не более | 5 | 6 |
Условная прочность при растяжении МПа (кгс/см 2 ), не менее | 26,0 (265) | 25,5 (260) |
Относительное удлинение при разрыве, %, не менее | 550–750 | 550–750 |
Относительная остаточная деформация после разрыва, %, не более | 20 | 20 |
Эластичность по отскоку, %, не менее | 39 | 38 |
Потери массы при сушке, %, не более | 0,35 | 0,40 |
Массовая доля золы, %, не более | 0,6 | 0,6 |
Массовая доля органических кислот, % | 5,0–6,5 | 5,0–6,5 |
Массовая доля мыл органических кислот, %, не более | 0,15–0,20 | 0,15–0,20 |
Массовая доля связанного мономера, % стирола, или α-метилстирола или метилметакрилата | ||
Массовая доля антиоксиданта, %, не более, ВС-1 или ВС-30А или ВТС-150 или Агидола-2 или Агидола-1 или П-23 (алкофен Б) или Фосфит НФ, АО-6, полигард | — 1,0–2,0 1,0–1,4 0,7–1,2 — 0,4–1,2 1,0–2,0 | — 1,0–2,0 1,0–1,4 0,7–1,2 — 0,4–1,2 1,0–2,0 |
Эмульсионные бутадиен-стирольные каучуки относятся к наиболее распространенным синтетическим каучукам общего назначения. Основная область их применения – производство шин. Их широко используют также при изготовлении транспортерных лент, различных резинотехнических изделий, обуви и др. Специальные марки бутадиен-стирольных каучуков (например, СКМС-30 АРПД), не содержащие электропроводящих примесей, используются в кабельной промышленности. Бутадиен-стирольные каучуки с низким содержанием стирола (10%) применяются для изготовления изделий, работающих в условиях низких температур. На основе бутадиен-стирольных каучуков изготовляют защитные резины, стойкие к воздействию γ-радиации.
Бутадиен-стирольные каучуки вулканизуются серой и перерабатываются на обычном оборудовании резиновой промышленности; высокотемпературные каучуки подвергаются термоокислительной пластикации. Ненаполненные вулканизаты на основе бутадиен-стирольных каучуков отличаются низкими физико-механическими показателями и не находят технического применения. В качестве наполнителя используется технический углерод.
Бутадиен-стирольный каучук является одним из самых распространенных промышленно выпускаемых каучуков общего назначения и выпускается в широком ассортименте и большом объеме.
Распределение звеньев бутадиена и стирола в макромолекуле полимера – нерегулярное, статистическое.
Производство бутадиен-стирольных каучуков может проводиться как в растворе, так и в эмульсии. Эмульсионные бутадиен-стирольные каучуки в настоящее время являются наиболее распространенными и дешевыми, они выпускаются на пяти заводах: в Воронеже, Стерлитамаке, Тольятти, Омске и Красноярске.
Эмульсионную полимеризацию проводят при высокой (50°С – «горячая» полимеризация) и при пониженной (5°С – «холодная» полимеризация) температуре.
Содержание полимера в эмульсионных каучуках составляет около 92–95%, а в растворных – около 98%.
В зависимости от условий получения средняя молекулярная масса эмульсионных каучуков колеблется от 200 до 400 тыс. при широком ММР и достаточно большой разветвленности цепей. Растворные каучуки имеют очень узкое ММР.
Рассмотрены технологии производства эмульсионных и растворных бутадиен-стирольных каучуков.
Расшифровка обозначений каучука: СК(М) С – бутадиен – (метил) стирольный, 30 – содержание a-метилстирола, А – низкотемпературная полимеризация, Р – полимеризация проводилась в присутствии регуляторов полимеризации, К – эмульгатор – соли диспропорционированной иди гидрированной канифоли, М-27 – содержание масла в %.
1. ФГУП «НИИСК» [Электронный ресурс]. – [2006]. – Режим доступа: http://www.vniisk.ru/Rus/istor.htm
2. Синтетический каучук, под ред. И.В. Гармонова, 2-е изд., Л.: Химия, 1983, с. 193–238.
3. Каучуки синтетические бутадиен-метилстирольный CKMC-30 APKM-I5 и бутадиен-стирольный СКС-30 АРКМ-15. Технические условия. ГОСТ 11138–78. Государственный комитет СССР по стандартам: Москва, 1978.
4. Альбом технологических схем основных производств промышленности синтетического каучука. Кирпичников П.А., Береснев В.В., Попова Л.М. Учеб. пособие для вузов. – 2-е изд., перераб. – Л.: Химия, 1986 – 224 с.
5. Пат. РФ 2261870, Способ получения синтетических каучуков, Щербань, Г.Т. [и др.], 2005.
6. Основы технологии синтеза каучуков, Литвин, О.Б. – М.: Химия, 1972, с. 382–396.
Источник