Биотехнология ферментов
Фементы (энзимы) (от лат. fermentum — закваска) — это белки, выполняющие роль катализаторов в живых организмах. Основные функции ферментов — ускорять превращение веществ, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его энергией и др.), а также регулировать биохимические процессы (напр., реализацию генетической информации), в т.ч. в ответ на изменяющиеся условия.
Выделяют 6 основных классов ферментов:
I класс – Оксидоредуктазы
II класс – Трансферазы
III класс – Гидролазы
IV класс – Лиазы
V класс – Изомеразы
VI класс – Лигазы
Достоинства ферментов по сравнению с неорганическими катализаторами:
— работают в мягких условиях, не требующих высоких температур и, следовательно, затрат топлива,
— используют доступное сырье (часто отходы), что выгодно с экономической и экологической точек зрения.
Ферменты по объёму производства занимают 3 место после аминокислот и антибиотиков.
Известно и охарактеризовано примерно 2000 ферментов по данным энзимологии. В промышленности используется всего около 30 ферментов. Из производимых ферментов чаще всего используются (и продаются) гидролазы – щелочные и нейтральные протеазы (60%). Они в основном используюся в качестве детергентов при производстве синтетических моющих средств. На втором месте — гликозидазы (30%). Они используются в производстве кондитерских изделий, фруктовых и овощных соков. Основное место среди них занимают глюкоизомераза и глюкозамилаза, применяющиеся при обогащении фруктозой кукурузных сиропов и составляющие около 50% рынка пищевых ферментных препаратов.
Ферменты применяются также в текстильной, кожевенной, целлюлозно-бумажной, медицинской, химической промышленности.
Применение ферментов в технологических процессах:
— амилаза – гидролиз крахмала до декстринов, мальтозы и глюкозы в спиртовой и пивоваренной промышленности, хлебопечении, получении патоки, глюкозы,
— липазы – гидролиз жиров и масел в пищевой, медицинской промышленности, сельском, жилищно-коммунальном хозяйстве, бытовой химии,
— пектиназа – гидролиз галактуронана, осветление вина и фруктовых соков,
— глюкоизомераза – изомеризация глюкозы во фруктозу в кондитерской, ликероводочной, безалкогольной промышленности, хлебопечении. Фруктоза является более сладким моносахаридом, чем глюкоза.
— пептидогидролаза – лизиса (гидролиза) белков в получении аминокислот, производство и получение сыра, мягчение мясных и рыбных изделий, выделка кож, активизация пищеварения. В пивоваренной, винодельческой, пищевой промышленности, в сельском хозяйстве, медицине.
— целлюлазы – гидролиз целлюлозы до глюкозы. Производство пищевых и кормовых препаратов, этанола, глюкозо-фруктозных сиропов. Спиртовая, пивоваренная, пищеконцентратнная промышленность. Хлебопечение, коромопроизводство.
— фруктофуранозилаза – инверсия сахарозы. Кондитерская, ликероводочная, безалкогольная промышленность, производство сиропов.
Получение ферментов
Традиционные источники ферментов – это природные объекты, в которых содержание фермента составляет не менее 1%.
Без применения биотехнологии для получения ферментов в больших количествах пригодны только некоторые растительные организмы на определенной фазе их развития: например, проросшее зерно различных злаков и бобовых, латекс и сок зеленой массы некоторых растений, а также ткани и органы животных: сычуг крупного рогатого скота, семенники половозрелых животных.
Зато практически неограниченный источник ферментов – это микроорганизмы и грибки. За счёт размножения они самостоятельно наращивают объёмы производства ферментов.
В настоящее время наиболее прогрессивным является метод культивирования микроорганизмов при непрерывной подаче в ферментер как питательной среды, так и посевного (микробного) материала.
Иммобилизованные ферменты
Иммобилизированные ферменты (от лат. immobiiis — неподвижный) — это препараты ферментов, молекулы которых связаны с матрицей, или носителем (как правило, полимером), и сохраняют при этом полностью или частично свои каталитические свойства. Иммобилизованные ферменты обычно не растворимы в воде; между двумя фазами возможен обмен молекулами субстрата, продуктов каталитической реакции, ингибиторов и активаторов.
Существует несколько основных способов иммобилизации ферментов.
Способы иммобилизации ферментов:
1) путем образования ковалентных связей между ферментом и матрицей;
2) полимеризацией мономера, образующего матрицу, в присутствии фермента, который при этом оказывается включенным в сетку полимера — обычно геля;
3) благодаря электростатическому взаимодействию противоположно заряженных групп фермента и матрицы;
4) сополимеризацией фермента и мономера, образующего матрицу;
5) связыванием фермента и матрицы в результате невалентных взаимодействий — гидрофобных, с образованием водородных связей и др.;
6) инкапсулированием — созданием около молекул фермента полупроницаемой капсулы, например, включением фермента в липосомы;
7) сшиванием молекул фермента между собой, например, глутаровым альдегидом, диметиловым эфиром диимида адипиновой кислоты.
Конкретные примеры использования иммобилизированных ферментов: производство фруктозы из глюкозных сиропов.
Иммобилизованные ферменты в промышленности
Сегодня в промышленности реализовано всего четыре крупномасштабные технологии на основе иммобилизованных ферментов:
1. Глюкозоизомеразы.
2. Аминоацилазы.
3. Пенициллинацилазы.
4. Лактазы. Так, лактазу иммобилизовали на частицах кремнезема и применяют для превращения лактозы молочной сыворотки в глюкозу и галактозу.
Перспективные ферменты
В обозримом будущем иммобилизованные ферменты могут быть использованы для следующих целей.
1. Холинэстераза. Она может применяться для определения пестицидов. Степень ингибирования этого фермента в присутствии пестицидов оценивают электрохимическими или колориметрическими методами.
2. Карбоангидраза. Аналогичным образом другие ферменты могут использоваться для определения токсических веществ. Так, карбоангидраза очень чувствительна даже к малым концентрациям хлорпроизводных углеводородов,
3. Гексокиназа — чувствительна к хлордану, линдану и токсафену.
4. Диизопропилфторфосфатаза. Иммобилизованная диизопропилфторфосфатаза нервных клеток кальмара может найти применение для обезвреживания фосфоорганических нервных газов (зомана, зарина).
5. Гепариназа. Иммобилизованная гепариназа может применяться для предотвращения тромбообразования в аппаратах искусственного кровообращения.
6. Билирубиноксидаза. Иммобилизованная билирубиноксидаза может использоваться для удаления билирубина из крови новорожденных, страдающих желтухой.
7. Гемоглобин. Предложен новый способ применения иммобилизованного гемоглобина. Суть его состоит в том, что включенный в полиуретановую матрицу белок образует «гемогубку», способную поглощать кислород прямо из воды с эффективностью 80%. Затем кислород высвобождается из полимера под действием слабого электрического разряда или в вакууме. Предполагается, что такая система может снабжать кислородом водолазов либо работающие под водой двигатели.
Следующий этап в применении иммобилизованных ферментов — это создание систем сразу из нескольких иммобилизованных ферментов, подобно тому, как это делается в живой клетке.
Возможно, вскоре удастся создать такие простейшие системы из нескольких иммобилизованных ферментов. Так, если заключить в микрокапсулы три фермента — уреазу, глутаматдегидрогеназу и глюкозодегидрогеназу, то их можно будет использовать для удаления мочевины из крови больных с почечной недостаточностью.
Иммобилизованные ферменты найдут дальнейшее применение в молочной промышленности. При производстве сыра могут использоваться иммобилизованные свертывающие молоко белки — реннин и пепсин. Для гидролиза жира в молоке можно использовать иммобилизованные липазы и эстеразы. Получим «биотехнологический» сыр.
Разнообразные иммобилизованные ферменты со временем найдут применение и в датчиках для быстрого анализа. Сегодня в таком качестве используются лишь несколько ферментов, но когда будет решена проблема стабилизации, их число увеличится. Особенно полезными из-за их высокой стабильности могут оказаться ферменты термофилов.
Источник