- Биологические
- Что это такое и каков принцип работы?
- Методы очистки сточных вод
- Эффективность
- Плюсы и минусы
- Механизм процесса
- Технологическая схема аэробной чистки
- Анаэробной
- Помощь микроорганизмов и бактерий
- Системы
- Биопрепараты
- Доочистка хозяйственно-бытовых стоков
- Полезное видео
- Заключение
- Использование микроорганизмов при биологической очистке загрязнений, вызванных вредными выбросами поршневых двигателей
- Библиографическое описание:
Биологические
Методы биоочистки активно применяются в промышленных и бытовых условиях.
Использование микроорганизмов – обязательный этап улучшения качества сточных вод наряду с механическими, физическими и химическими способами.
Природный процесс, воссозданный в искусственных условиях, помогает справиться со многими загрязнениями без применения дорогостоящих технологий.
Что это такое и каков принцип работы?
После этапа механической фильтрации (удаления нерастворимых частиц) сточные воды попадают на биологическую очистку.
Принцип основан на способности некоторых микроорганизмов расщеплять органические соединения до простых веществ – воды, углекислого газа, метана, сероводорода. Органика является источником энергии для бактерий и простейших.
Сточные воды включают в себя нитраты, аммиак, аминокислоты – они содержат азот, который обеспечивает жизнедеятельность микроорганизмов.
Фосфор и калий добывается бактериями из минеральных солей.
Чем больше в сточных водах этих веществ, тем интенсивнее размножение микроорганизмов и эффективнее очистка.
Методы очистки сточных вод
Специалисты выделяют две большие группы методов биоочистки:
- Естественные. Для улучшения качества сточных вод используются природные процессы, протекающие в воде, почве, растительных экосистемах. Загрязнения удерживаются, минерализуются, трансформируются или переносятся. Естественные экосистемы используются для доочистки сточных вод перед их спуском в водоемы.
- Искусственные методы. Для их реализации используются сооружения, созданные человеком. В них помещаются аэробные или анаэробные микроорганизмы и обеспечиваются благоприятные условия для переработки загрязнений.
Эффективность
Биологическая очистка сточной воды в промышленных условиях избавляет от 98% загрязнений.
Чтобы поддерживать процесс, нужно все время вносить активные микроорганизмы.
Биологический метод помогает переработать такие загрязняющие вещества и их соединения:
- Аммонийный азот;
- Легкоокисляющиеся органические соединения: бензол, глюкозу, ацетон, этанол и т.д.;
- Калий;
- Фосфор;
- Кальций;
- Белки, жиры, углеводы.
К сточным водам относятся промышленные и хозяйственно-бытовые стоки, а также атмосферные осадки. Все эти группы обязательно проходят этап биологической очистки на промышленных или локальных сооружениях.
Плюсы и минусы
Преимущества биологической очистки:
- Малое количество отходов. После переработки образуются вещества (углекислый газ, вода), которые легко утилизируются. Если при очистке выделяется метан, его используют для получения тепловой энергии. Переработанный ил – хорошее удобрение.
- Системы для биологической очистки работают автономно. Для их обслуживания не нужно вводить реагенты, а с контролем процесса справится 1 человек.
- Стоимость реализации биотехнологий ниже, чем на другие способы очистки воды.
- Естественные реакции создают экологически чистый цикл природного использования.
Биологическая очистка сточных вод не лишена недостатков.
Главные минусы метода:
- Сложность сохранения постоянного количества биомассы бактерий. Если их будет меньше нормы, сточные воды не очистятся полностью.
- В постройку очистных сооружений нужно вложить много денег. Но со временем затраты окупаются.
- Технологический режим очистки должен строго соблюдаться. При нарушениях эффективность метода значительно снижается.
- Не все органические соединения подлежат переработке. Если в сточных водах есть токсические соединения, их нужно удалить, иначе биомасса погибнет.
Механизм процесса
Для улучшения качества сточных вод используется два метода: аэробная и анаэробная биологическая очистка. В первом случае процесс протекает с помощью кислорода, во втором – без него.
Механизм очистки зависит от выбранного метода и биоценоза.
Технологическая схема аэробной чистки
Агентом выступает биопленка или активный ил.
Это совокупность бактерий, грибов, простейших, представителей микрофауны того или иного рода/группы с заданными характеристиками.
Классическая схема аэробной очистки выглядит так:
- Сточные воды попадают в анаэробную зону аэротенка-вторичного отстойника. Там они перемешиваются с активным илом.
- В установку нагнетается кислород, при необходимости вводятся компоненты, способствующие переработке.
- Происходит два биохимических процесса: окисление органического углерода и нитрификация.
- Осуществляется один или несколько рециклов: воды снова перемешиваются с активным илом и обогащаются кислородом.
- Переработанные стоки отстаиваются – происходит гравитационное разделение иловой смеси.
- Избыточный активный ил поступает на переработку, а часть массы возвращается на исходную позицию.
- Очищенные воды поступают на доочистку или спускаются в водоем.
Этапы очистки отличаются в разных системах, но суть метода остается той же.
Анаэробной
Этот метод применяется, когда в сточных водах большое количество органических загрязнений, твердых осадков и активного ила. В ходе метаногенеза (так называется процесс анаэробной очистки) загрязнения конвертируются в биогаз, который состоит из метана и углекислого газа.
Технологическая схема классической анаэробной очистки:
- Сточные воды попадают в отсек, где происходит метановое брожение. После взаимодействия анаэробных бактерий с загрязнениями образуется метан, углекислый газ, сероводород. Эти газы утилизируются.
Помощь микроорганизмов и бактерий
Аэробные бактерии запускают процессы окисления и нитрификации. Для этого им нужен кислород. Микроорганизмы живут в диапазоне температур – от +9 до +28 градусов, рН – 5,0-7,0.
- Псевдомонады – занимают 80% активного ила. Перерабатывают спирты, жирные кислоты, ароматические углеводороды, парафины и другие органические вещества.
- Нитрифицирующие – окисляют соединения азота.
- Серобактерии и тионовые бактерии – перерабатывают восстановленные соединения серы.
- Нитчатые – окисляют соединения углерода.
- Целлюлозоразлагающие – перерабатывают целлюлозное волокно.
В активном иле также встречаются:
- дрожжи,
- плесневые грибы,
- простейшие,
- коловратки,
- малощетинковые кольчатые черви.
Анаэробные бактерии не нуждаются в кислороде. Они запускают процессы брожения, аноксигенного окисления и метанообразования.
Группы анаэробных бактерий:
- Гидролитики – отвечают за первую стадию метаногенеза. Бактерии расщепляют белки, жиры, соединения целлюлозы, крахмала, обладают аммонифицирующей активностью. В результате образуется глицерин, жирные кислоты, аминокислоты, пептиды, моно- и дисахариды.
- Ацидогенные – отвечают за вторую стадию метаногенеза. С помощью бактерий происходит маслянокислое, ацетоно-бутиловое, пропионовое, спиртовое брожение. Перерабатываются промежуточные продукты гидролиза.
- Гетероацетогенные – отвечают за третью стадию метаногенеза. Бактерии переводят органические кислоты (масляную, пропионовую) в уксусную кислоту.
- Метаногенные – завершают анаэробную очистку. Микроорганизмы образуют биогаз, перерабатывая водород, углекислый и чадный газ, ацетат, метиламин, метанол.
Состав доминирующей микрофлоры зависит от характеристик стоков.
Системы
Для искусственной аэробной очистки чаще всего используют такие сооружения:
- Аэротенк – резервуар, в котором стоки смешиваются с активным илом. Часто он разделен на несколько камер, где происходят разные этапы биоочистки. Резервуар оснащен аэратором – системой подачи кислорода.
- Биотенк – разновидность аэротенков, в которой специальная загрузка позволяет увеличить общее количество биомассы.
- Биофильтр – бассейн с дренажем на днище. Очистка стоков происходит путем минерализации. Биоценоз – пленка аэробных микроорганизмов.
- Станция биологической очистки – локальное сооружение, которое устанавливается там, где нет возможности провести общесплавную канализацию. Очищенные стоки спускаются в грунт, а отходы используются в качестве удобрения. Станции перерабатывают объем сточных вод от 5 до 1000 куб. м. ЛОС очищают от 98-99% загрязнений.
Процессы анаэробной очистки зачастую проходят в таких традиционных сооружениях:
- Анаэробная лагуна – один или несколько отстойников, где стоки находятся от 1 недели до 2 месяцев. Газы выделяются в атмосферу.
- Септитенк – отстойник закрытого типа, в котором осадок из образовавшихся твердых частиц перегнивает и расщепляется анаэробами.
- Метантенк – конструкция, внешне похожая на септитенк. Но в резервуаре происходит перемешивание, обогрев и контроль основных параметров.
Биопрепараты
Биопрепараты применяют для выполнения таких задач:
- Разложения органики: жиров, углеводов, белков;
- Стимуляции работы активного ила;
- Сокращения объема побочных продуктов в виде осадка;
- Ускорения процесса переработки;
- Снижения показателей биохимического потребления кислорода (БПК, ХПК);
- Наращивания и восстановления активного ила.
Производители выпускают препараты, где сконцентрировано определенное количество штаммов натуральных бактерий.
Каждый биопрепарат содержит разные штаммы микроорганизмов, которые подбираются в зависимости от состава сточных вод.
Популярные биопрепараты:
Название | Цель использования | Цена |
Biofos | Очистка бытовых сточных вод | 43 р./25 мг |
bioExpert BIO STARTER | Стимуляция развития активного ила в септике или выгребной яме | 565 р./400 г |
Unibac (compost, start, winter, effect) | Очистка бытовых и промышленных стоков, наращивание активного ила | 470-750 р./0,5 л. |
Доочистка хозяйственно-бытовых стоков
В некоторых случаях после биологического этапа воды должны пройти доочистку.
Это нужно, когда:
- Их планируют спускать в маломощные водоемы, особенно предназначенные для рыбного хозяйства;
- Их будут использовать в промышленности или в бытовых целях.
Распространенный метод доочистки – отстаивание в биопрудах с естественной и искусственной аэрацией. В таких водоемах создаются благоприятные условия для массового развития микроорганизмов, которые расщепляют остатки загрязнений и борются с патогенами.
Несколько месяцев воды отстаиваются в биопрудах, и после удовлетворительного лабораторного анализа поступают в конечный пункт.
Полезное видео
Смотрите интересный видеоматериал, в котором подробно рассказано о процессе очистки сточных вод биологическим методом.
Заключение
Биологическая очистка сточных вод – метод, основанный на возможностях микроорганизмов, при помощи которых можно перерабатывать органические и некоторые минеральные загрязнения.
Особенности процесса:
- Происходит при участии аэробных и анаэробных бактерий;
- Осуществляется в природных или искусственно созданных условиях;
- Метод удаляет 98-99% загрязнений;
- Промышленная очистка стоков проходит в аэро-, био-, метантенках;
- На любом участке можно установить локальные очистные сооружения;
- Для запуска и интенсификации процесса используются биопрепараты;
- Отходы, образующиеся в результате процесса, экологически безопасные;
- Когда к сточным водам предъявляются повышенные требования по химическому составу, они проходят доочистку.
Биологическая очистка – обязательный этап улучшения качества сточных вод. Соблюдение технологий делает процесс безопасным, высокоэффективным и даже полезным для окружающей среды.
Источник
Использование микроорганизмов при биологической очистке загрязнений, вызванных вредными выбросами поршневых двигателей
Дата публикации: 30.01.2017 2017-01-30
Статья просмотрена: 1066 раз
Библиографическое описание:
Литвинов, П. В. Использование микроорганизмов при биологической очистке загрязнений, вызванных вредными выбросами поршневых двигателей / П. В. Литвинов, А. И. Чиркова. — Текст : непосредственный // Молодой ученый. — 2017. — № 4 (138). — С. 200-203. — URL: https://moluch.ru/archive/138/38785/ (дата обращения: 19.11.2021).
В статье рассмотрено влияние отработавших газов двигателей внутреннего сгорания на окружающую среду, а также способы очистки почвы, атмосферы и воды от загрязняющих веществ при помощи биологических методов. Обобщены данные о возможности использования микроорганизмов при очистке почвы, воды и атмосферы. Обозначены цели дальнейших исследований.
Ключевые слова: отработавшие газы, вредные вещества, микроорганизмы, биоремедиация, бактерии
В течение жизни человек находится в среде воздуха, от качества которой зависит его здоровье, самочувствие и работоспособность. Ухудшение качества воздуха из-за присутствия в нем различных загрязняющих веществ, ведет к гибели зеленых насаждений, загрязнению почв, водоемов и водотоков, к повреждению памятников культуры, конструкций зданий и сооружений. Автотранспортная деятельность сопровождается выделением в атмосферный воздух различных веществ, загрязняющих воздушную среду. В воздух поступают отработавшие газы (ОГ) поршневых двигателей. Качество воздушной среды ухудшается из-за присутствия в ней носителей неприятных запахов [1. С. 128–130].
При развитии современных экологических требований к двигателям внутреннего сгорания (ДВС) учитываются различные факторы влияния на окружающую среду. В последние годы в связи с ростом плотности движения автомобилей в городах резко увеличилось загрязнение атмосферы продуктами сгорания двигателей. Выпускные газы двигателей внутреннего сгорания (ДВС) состоят в основном из безвредных продуктов сгорания топлива — углекислого газа и паров воды. [2] Тем не менее в ОГ ДВС содержатся вещества, негативно влияющие на состояние здоровья человека. Согласно правилам ЕЭК ООН № 24–03, 49–01, 49–02, 49–05, 83–02, 83–04, 83–05, 83–06, 96–02, стандартам Евро-4, 5, 6 и Техническому регламенту Таможенного Союза ТР ТС 018/2011 основными вредными веществами, подлежащими контролю являются окись углерода (CO), оксиды азота (NOx), углеводороды (CH), сера (S) [3].
При попадании в атмосферу и водные источники, на почву и растительность, а также на поверхности зданий, сооружений и других объектов жизнедеятельности человека оксиды азота, растворяясь в воде, образуют азотную и азотистую кислоту, вредное действие которых сказывается и на организме человека, вызывая заболевания сердечнососудистой, дыхательной, нервной систем и желудочно-кишечного тракта.
Окись углерода связывая гемоглобин крови человека и животных образует карбоксигемоглобин, блокирующий перенос кислорода к тканям и органам. При концентрации в 0,2 % по объёму данный газ вызывает тяжёлые отравления, а при превышении 1 % — летальный исход.
Различные виды углеводородов представляют опасность как канцероген, а также вызывают заболевания сердечнососудистой, нервной и дыхательной и др. систем [4]. Помимо этого отрицательное воздействие нефти и нефтепродуктов на окружающую среду общеизвестно и при нарушении природоохранного законодательства приводит к изменению состава почв, загрязнению поверхностных и подземных вод, а также атмосферы. Загрязнение природной среды нефтепродуктами является экологической проблемой во многих регионах Российской Федерации, поскольку негативное воздействие ОГ ДВС вызывает непосредственную деградацию почвенного покрова, так и на различные объекты биосферы [5, 6]
Существуют несколько методов ликвидации загрязнений от продуктов сгорания бензиновых ДВС, в том числе использование альтернативных топлив, в особенности в тепловозных и судовых дизельных установках, а также стационарных дизельных генераторах [7, 8], каталитических нейтрализаторов, в том числе из палладия, приготовленных методом микродуговой оксидации [9, 10] и каталитических покрытий поршня [11, 12, 13]. Однако полностью избавиться от выбросов не представляется возможным, поэтому при попадании вредных веществ в почву, в водную среду и в приземный слой атмосферы используют биологический метод очистки [14].
Основная часть. Биологические методы подразумевают использование углеводородокисляющих и других микроорганизмов (УОМ), которые способны разлагать продукты сгорания до безопасных минеральных соединений. В различных источниках имеется описание 22 родов бактерий, 31 рода микроскопических грибов и в том числе 19 родов дрожжей выделенных из почвенных экосистем. Из морской среды обитания выделено 25 родов бактерий и 27 родов микроскопических грибов. В их числе: бактерии (Bacillus, Clostridium, Escherichia и др.), мицелиальные грибы (Aspergillus, Penicillium, Mucor и др.), дрожжи (Candida, Saccharomyces, Trichosporon и др.), цианобактерии (Microcoleus, Oscillatoriam, Plectonema и др) [14, 15].
При этом, большинство вредных веществ, содержащихся в ОГ ДВС, попадают в атмосферу. В связи с этим необходимо рассмотреть роль микроорганизмов в очистке воздуха.
Верхние слои атмосферы в малой степени очищаются микроорганизмами, поскольку большинство из них гибнет в атмосфере из-за ультрафиолетовых лучей, высыхания, отсутствия питательных веществ. Основная часть микроорганизмов обитает в верхних слоях почвы и очищает приземный слой атмосферы, используя в качестве субстратов роста окись углерода (CO), сероводород (H2S), углеводороды (CH) и окислы азота (NOx). При этом главным источником загрязнения воздушной среды является почва. Частично микроорганизмы попадают в воздух с открытых водоемов с капельками воды, от человека, животных, растений [16].
Существенным фактором очищения воздуха является наличие лесов в загородной среде, и парков, скверов и газонов в городской. При этом, в сельской местности лесопосадки создают также защиту от шума, а газонная трава в городской местности играет большую роль, нежели скверы и парки. Корневая система газонной травы способствует рыхлению почвы и проникновению в неё воздуха, что является благоприятным фактором для микроорганизмов, окисляющих вредные газы и токсичные летучие примеси в приземном слое атмосферы. При этом, при удобрении клумб и газонов возможно использование стабилизированных осадков сточных вод, богатых органикой. При этом необходимо учитывать, что данный вид удобрения применим только к озеленительным процессам, но не к сельскому хозяйству.
Несмотря на преимущества данных способов очистки атмосферы, одним из серьёзных препятствий для их осуществления является патогенность или условная патогенность микроорганизмов и грибов, таких как Gongronella butleri, Alternaria alternate, Proteus vulgaris, бактерии родов Staphylococcus и Streptococcus.
Кроме того, существуют и другие физиологические группы бактерий, среди которых выделяют нитрифицирующие (Nitrosomonas, Nitrosococcus и Nitrosospira). До недавнего времени считалось, что данные бактерии оказывают благородное влияние на почву. Однако при использовании на автотранспортных и сельскохозяйственных предприятиях машин, оснащённых дизельными двигателями возникает опасность окисления вредных выбросов NOx с последующим образованием гидроксамовых кислот и различных вредных азотных соединений.
Также пагубное влияние оказывают сероокисляющие бактерии, поскольку сера является одним из компонентов вредных выбросов дизельных ДВС.
В связи с этим снижение выбросов серы, азота, а также углеводородов и окиси углерода является задачей инженеров конструкторов ДВС. Способы снижения выбросов данных веществ ранее были представлены в данной статье.
Учитывая данные факторы, представляется возможным контролировать загрязнение в крупных городах, предприятиях и около автомагистралей. Указанные способы очистки являются применимыми на сегодняшний день. В последующих работах будут рассмотрены влияние микроорганизмов на содержание вредных веществ возле автомобильных дорог и магистралей, а также будут проведены и проанализированы расчёты экономического ущерба от загрязнения почвы, атмосферы и воды и будут предложены способы уменьшения данного ущерба.
Вывод. Применение методов биологической очистки при загрязнении продуктами сгорания углеводородных топлив в большей степени подходит для очистки почвы и воды, поскольку многие микроорганизмы, ненадолго попадающие в атмосферу, являются патогенными и условно патогенными, а также вызывающими образование опасных соединений, в том числе азотной и серной кислоты. Для предотвращения загрязнения атмосферы предлагается использование альтернативных топлив, каталитических нейтрализаторов и каталитических покрытий поршня, что в свою очередь также уменьшит уровень загрязнения почвы и воды.
1. Хомич В. А. Экология городской среды: учебное пособие для вузов. — Омск: Изд-во СибАДИ, 2002. — 267 с.
2. Рыжих Н. Е. Способы уменьшения выброса двигателями внутреннего сгорания токсичных газов в атмосферу // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2004. № 7. С. 61–68.
3. Ведрученко В. Р., Литвинов П. В. Анализ требований к нормативам выбросов вредных веществ // Архитектура, строительство, транспорт [Электронный ресурс]: материалы Международной научно-практической конференции. — Омск: СибАДИ, 2015. — С. 970–976. (дата обращения 17.01.2017)
4. Шароглазов Б. А. Поршневые двигатели: теория, моделирование и расчёт процессов: учебник по курсу «Теория рабочих процессов и моделирование процессов в двигателях внутреннего сгорания»: для высших учебных заведений, обучающихся по специальности 140501 «Двигатели внутреннего сгорания» направления подготовки 140500 «Энергомашиностроение» / Б. А. Шароглазов, В. В. Шишков: под ред. Б. А. Шароглазова; М-во образования и науки Российской Федерации, Южно-Уральский гос. Ун-т. Челябинск, 2011.
5. Хабиров И. К., Габбасова И. М., Хазиев Ф. Х. Устойчивость почвенных процессов. — Уфа: БГАУ, 2001. — 327 с.
- Бурмистрова Т. И., Алексеева Т. П., Перфильева В. Д., Терещенко Н. Н., Стахина Л. Д. Биодеградация нефти и нефтепродуктов в почве с использованием мелиорантов на основе активированного торфа // Химия растительного сырья. 2003. № 3. — С. 69–72.
- Ведрученко В. Р., Малахов И. И. Альтернативные виды топлива для судовых дизелей: монография / ФБОУ ВПО «Новосибирская государственная академия водного транспорта». Омск, 2012. 172 с.
- Ведрученко В. Р., Крайнов В. В., Жданов Н. В., Кульков М. В. О выборе схем и разработке технических решений систем топливоподачи альтернативных и тяжёлых топлив в дизелях // Омский научный вестник. — 2010. — № 2(90). — С. 157–162.
9. Борисов В. А., Иванов А. Л. Обоснование выбора материала катализатора для повышения экологической безопасности ДВС // Архитектура, строительство, транспорт [Электронный ресурс]: материалы Международной научно-практической конференции. — Омск: СибАДИ, 2015. — С. 967–970. (дата обращения 17.01.2017)
- Борисов В. А., Супрунов Г. И., Сигаева С. С., Мухин В. А., Иванов А. Л., Аношкина Е. А., Темерев В. Л. Окисление CO на палладиевых катализаторах на носителях SiO2 (B2O3-SiO2, ZrO2-CeO2, γ-Al2O3, CeO2)/ силумин, приготовленных микродуговой оксидацией // Техника и технология нефтехимического и нефтегазового производства: материалы 5-й международной научно-технической конференции. — Омск, 2015. — С. 11.
- Zeng W., Xie M. A novel approach to reduce hydrocarbon emissions from the HCCI engine // Chemical engineering journal, Volume 139, Issue 2, p.380–389, 2008.
- Hu Z, Ladommatos N., In-Cylinder Catalysts — A Novel Approach to Reduce Hydrocarbon Emissions from Spark-Ignition Engines // SAE Technical Paper 952419, 1995, doi:10.4271/952419.
- Ведрученко В. Р., Иванов А. Л., Борисов В. А., Литвинов П. В. Влияние материала поршня на процесс сгорания топлива в двигателе // Вестник СибАДИ. — 2016. — № 5(51). — С. 61–68.
- Александров А. Ю. Характеристика штаммов микроорганизмов, участвующих в процессе биоремедиации // Вестник Волгоградского государственного университета. Серия 3: Экономика. Экология. — 2009. — № 1. С. 231–237.
- Тимергазина И. Ф., Переходова Л. С. К проблеме биологического окисления нефти и нефтепродуктов углеводородокисляющими микроорганизмами // Нефтегазовая геология. Теория и практика. — 2012. — Том. 7. — № 1. С. 1–28.
- Евдокимова Г. А., Корнейкова М. В., Мозгова Н. П., Редькина В. В. Микроорганизмы воздушной среды обитания по градиенту загрязнения от комбината «Печенганикель» к заповеднику «Пасвик» // Вестник Кольского научного центра РАН. — 2012. — № 3(10). — С. 22–25.
Источник