Бинарные деревья способы обхода

Обход двоичного дерева

Обход дерева в глубину

В отличие от линейных структур типа односвязного списка и массива, у которых есть каноничный, прямой способ обхода, деревья можно обходить несколькими способами, в зависимости от поставленной задачи. Начиная с корня, можно применять необходимое действия (именуемое в дальнейшем «визит») как к самому узлу, так и к его левой или правой ветви. Порядок, в котором операции применяются, и будет определять способ обхода.

Наиболее простыми и понятными являются рекурсивные алгоритмы. При сведении к итеративному алгоритму, так как дерево предполагает несколько путей обхода, часть узлов придётся «откладывать» для дальнейшей обработки, для чего будут использоваться стек или очередь.

Существует три основных способа обхода в глубину.

    Прямой (pre-order)
    Посетить корень
    Обойти левое поддерево
    Обойти правое поддерево

Рекурсивное решение полностью соответствует описанию алгоритма

Переделаем функции, чтобы они могли работать с узлами. Для этого понадобится передавать функцию, которая могла бы работать с узлом и получать дополнительные параметры. Эти параметры будут передаваться указателем типа void. Если нам понадобится передать параметры, всегда можно будет их передать указателем на структуру.

В качестве функции visit можно передавать, например, такую функцию

Рассмотрим теперь результат каждого из обходов.

inOrderTraversal выводит сначала самый левый узел, потом средний, потом правый. Если слева находилось дерево, то алгоритм применяется к нему рекурсивно. Если мы обрабатываем двоичное дерево поиска, то самым левым будет самый маленький элемент, самым правым и самым последним при обработке будет самый большой элемент. Симметричный обход выведет дерево в отсортированном по возрастанию виде. Для того, чтобы отсортировать дерево в обратном порядке, нужно сначала обработать правую ветвь, то есть функция

выведет дерево в обратном порядке.

postOrderTraversal выводит узлы слева направо, снизу вверх. Это имеет ряд применений, сейчас рассмотрим только одно – удаление дерева. Обход дерева начинается снизу, с узлов, у которых нет родителей. Их можно безболезненно удалять, так как обращение root->left и root->right происходят до удаления объекта.

Напомню, что если мы хотим изменить указатель, то нужно передавать указатель на указатель.

Итеративная реализация обхода в глубину требует использования стека. Он нужен для того, чтобы «откладывать» на потом обработку некоторых узлов (например тех, у кого есть необработанные наследники, или всех левых улов и т.д.).

Реализовывать стек будем с помощью массива, который при переполнении будет изменять свой размер. Напомню, что реализация стека требует двух функций — push, которая кладёт значение на вершину стека и pop, которая снимает значение с вершины стека и возвращает его. Кроме того, будем использовать функцию peek, которая возвращает значение с вершины, но не удаляет его.

После того, как у нас готова реализация стека, напишем обходы.

Обход в ширину

О бход в ширину подразумевает, что сначала мы посещаем корень, затем, слева направо, все ветви первого уровня, затем все ветви второго уровня и т.д.

Пусть мы находимся в корне дерева. Далее необходимо посетить всех наследников корня. Таким образом, нужно засунуть в контейнер сначала узел, затем его наследников, при этом узел далее должен быть обработан первым. То есть, элемент, который вошёл первым должен быть обработан первым. Это очередь, и в этом примере мы будем использовать готовую реализацию очереди с помощью двусвязного списка.

Реализация на си

Заменим очередь на стек

Теперь функция обходит узлы как Post-Order, только задом наперёд.

Обход бесконечных деревьев

Б ывают ситуации, когда необходимо обработать бесконечное дерево. Дерево может генерироваться, когда мы обращаемся к нему (например, мы обходим сайт, страницы которого генерируются сервером во время обращения), либо его размер просто не известен (и возможно велик).

Читайте также:  Перец соленый острый холодным способом

Если дерево растёт бесконечно в глубину, то его можно обрабатывать, используя проход в ширину. То есть, известно, что если спускаться вниз по ветви, то до конца мы не дойдём, но на данном уровне дерево имеет конечный размер.

Если дерево растёт бесконечно в ширину, но при этом имеет конечную глубину (то есть, у узла не два наследника, а из бесконечно много), то можно использовать поиск в глубину.

Обработку бесконечного дерева можно заканчивать например, когда обработано достаточно большое количество узлов или их значения достигли какой-то величины.

Пусть робот «шмугл» индексирует страницы на сайте. Количество ссылок на странице конечно. (т.к. страница конечна). То есть можно рассматривать страницы как узел, ссылки с которой ведут к другим узлам. Конечно, есть ссылки, которые ведут на предыдущие страницы, есть кросс-ссылки между страницами на одном уровне вложенности и т.д., сейчас всех тонкостей рассматривать не будем. То есть, есть дерево, у каждого узла которого конечное число наследников. В лучшем случае количество ссылок конечно и охватывает весь сайт. Однако, может попасться страница, на которой есть календарь, ссылки с которого генерируются автоматически. Программист забыл, что ссылки в будущее надо запретить, поэтому в глубину мы получаем бесконечно дерево, каждый новый узел которого генерируется автоматически. Обход этого дерева закончится, например, когда будет забит канал или превышен лимит по ссылкам.

Источник

Дерево

Дерево – структура данных, представляющая собой древовидную структуру в виде набора связанных узлов.

Бинарное дерево — это конечное множество элементов, которое либо пусто, либо содержит элемент ( корень ), связанный с двумя различными бинарными деревьями, называемыми левым и правым поддеревьями . Каждый элемент бинарного дерева называется узлом . Связи между узлами дерева называются его ветвями .

Способ представления бинарного дерева:

  • A — корень дерева
  • В — корень левого поддерева
  • С — корень правого поддерева

Корень дерева расположен на уровне с минимальным значением.

Узел D , который находится непосредственно под узлом B , называется потомком B . Если D находится на уровне i , то B – на уровне i-1 . Узел B называется предком D .

Максимальный уровень какого-либо элемента дерева называется его глубиной или высотой .

Если элемент не имеет потомков, он называется листом или терминальным узлом дерева.

Остальные элементы – внутренние узлы (узлы ветвления).

Число потомков внутреннего узла называется его степенью . Максимальная степень всех узлов есть степень дерева.

Число ветвей, которое нужно пройти от корня к узлу x , называется длиной пути к x . Корень имеет длину пути равную 0 ; узел на уровне i имеет длину пути равную i .

Бинарное дерево применяется в тех случаях, когда в каждой точке вычислительного процесса должно быть принято одно из двух возможных решений.

Имеется много задач, которые можно выполнять на дереве.

Распространенная задача — выполнение заданной операции p с каждым элементом дерева. Здесь p рассматривается как параметр более общей задачи посещения всех узлов или задачи обхода дерева.

Если рассматривать задачу как единый последовательный процесс, то отдельные узлы посещаются в определенном порядке и могут считаться расположенными линейно.

Способы обхода дерева

Пусть имеем дерево, где A — корень, B и C — левое и правое поддеревья.

Существует три способа обхода дерева:

  • Обход дерева сверху вниз (в прямом порядке): A, B, C — префиксная форма.
  • Обход дерева в симметричном порядке (слева направо): B, A, C — инфиксная форма.
  • Обход дерева в обратном порядке (снизу вверх): B, C, A — постфиксная форма.

Реализация дерева

Узел дерева можно описать как структуру:

При этом обход дерева в префиксной форме будет иметь вид

Обход дерева в инфиксной форме будет иметь вид

Обход дерева в постфиксной форме будет иметь вид

Бинарное (двоичное) дерево поиска – это бинарное дерево, для которого выполняются следующие дополнительные условия (свойства дерева поиска):

  • оба поддерева – левое и правое, являются двоичными деревьями поиска;
  • у всех узлов левого поддерева произвольного узла X значения ключей данных меньше, чем значение ключа данных самого узла X ;
  • у всех узлов правого поддерева произвольного узла X значения ключей данных не меньше, чем значение ключа данных узла X .
Читайте также:  При проведении конкурентных способов закупки не допускаются

Данные в каждом узле должны обладать ключами, на которых определена операция сравнения меньше.

Как правило, информация, представляющая каждый узел, является записью, а не единственным полем данных.

Для составления бинарного дерева поиска рассмотрим функцию добавления узла в дерево.

Добавление узлов в дерево

Удаление поддерева

Пример Написать программу, подсчитывающую частоту встречаемости слов входного потока.

Поскольку список слов заранее не известен, мы не можем предварительно упорядочить его. Неразумно пользоваться линейным поиском каждого полученного слова, чтобы определять, встречалось оно ранее или нет, т.к. в этом случае программа работает слишком медленно.

Один из способов — постоянно поддерживать упорядоченность уже полученных слов, помещая каждое новое слово в такое место, чтобы не нарушалась имеющаяся упорядоченность. Воспользуемся бинарным деревом.

В дереве каждый узел содержит:

  • указатель на текст слова;
  • счетчик числа встречаемости;
  • указатель на левого потомка;
  • указатель на правого потомка.

Рассмотрим выполнение программы на примере фразы

now is the time for all good men to come to the aid of their party

При этом дерево будет иметь следующий вид

Результат выполнения

Источник

Двоичное(бинарное) дерево: создание и обход

Авторизуйтесь

Двоичное(бинарное) дерево: создание и обход

В этой статье рассмотрим двоичное дерево, как оно строится и варианты обходов.

Двоичное дерево в первую очередь дерево. В программировании – структура данных, которая имеет корень и дочерние узлы, без циклических связей. Если рассмотреть отдельно любой узел с дочерними элементами, то получится тоже дерево. Узел называется внутренним, если имеет хотя бы одно поддерево. Cамые нижние элементы, которые не имеют дочерних элементов, называются листами или листовыми узлами.

Дерево обычно рисуется сверху вниз.

В узлах может храниться любая информация, от примитивных типов до объектов. В этой статье, мы рассмотрим реализацию, когда в узле также хранятся ссылки на дочерние элементы. Кроме такого подхода, возможен альтернативный подход для двоичного дерева — хранение в массиве.

Sportmaster Lab , Санкт-Петербург, Москва, Липецк, можно удалённо , По итогам собеседования

Первая особенность двоичного дерева, что любой узел не может иметь более двух детей. Их называют просто — левый и правый потомок, или левое и правое поддерево.

Вторая особенность двоичного дерева, и основное правило его построения, заключается в том что левый потомок меньше текущего узла, а правый потомок больше. Отношение больше/меньше имеет смысл для сравниваемых объектов, например числа, строки, если в дереве содержатся сложные объекты, то для них берётся какая-нибудь процедура сравнения, и она будет отрабатывать при всех операциях работы с деревом.

Создание дерева, вставка

Рассмотрим существующее двоичное дерево. Корень содержит число 3, все узлы в левом поддереве меньше текущего, в правом — больше. Такие же правила действуют для любого рассматриваемого узла и его поддеревьев.

Попробуем вставить в это дерево элемент -1.

Из корня идем в левое поддерево, так как -1 меньше 3. Из узла со значением 1 также идём в левое поддерево. Но в этом узле левое поддерево отсутствует, вставляем в эту позицию элемент, создавая новый узел дерева.

Вставим в получившееся дерево элемент 3.5.

Проходим по дереву, сравнивая на каждом из этапов вставляемое значение с элементом в узле, пока не дойдем до узла, в котором следующий узел для сравнения отсутствует, в эту позицию и вставляем новый узел.

Если дерево не существует, то есть root равен null, то элемент вставляется в корень, после этого проводится вставка по описанному выше алгоритму.

Напишем класс для создания двоичного дерева:

На скриншоте ниже то, какую информацию хранит в себе binaryTree :

Читайте также:  Способы переноски пострадавшего при различных травмах

Обход

Рассмотрим несколько алгоритмов обхода/поиска элементов в двоичном дереве.

Мы можем спускаться по дереву, в каждом из узлов есть выбор куда можем пойти в первую очередь и какой из элементов обработать сначала: левое поддерево, корень или право поддерево. Такие варианты обхода называются обходы в глубину (depth first).

Какие возможны варианты обхода (слово поддерево опустим):

  • корень, левое, правое (preorder, прямой);
  • корень, правое, левое;
  • левое, корень, правое (inorder, симметричный, центрированный);
  • левое, правое, корень (postorder, обратный);
  • правое, корень, левое;
  • правое, левое, корень.

Также используется вариант для обхода деревьев по уровням. Уровень в дереве — его удалённость от корня. Сначала обходится корень, после этого узлы первого уровня и так далее. Называется обход в ширину, по уровням, breadth first, BFS — breadth first search или level order traversal.

Выбирается один из этих вариантов, и делается обход, в каждом из узлов применяя выбранную стратегию.

Обычно для обходов в глубину применяется рекурсия. Реализуем один из вариантов, например симметричный: левое поддерево, корень, правое поддерево.

При этом мы обработаем первым самый левый узел, где левое поддерево окажется пустым, но правое может присутствовать. То есть в каждом из узлов будем спускаться ниже и ниже, пока левое поддерево не окажется пустым.

Для реализации других вариантов обхода просто меняем порядок вызова функций в функции _inorderInternal . И нужно не забыть переименовать функцию, чтобы название соответствовало содержимому.

Рассмотрим inorder алгоритм обхода на примере дерева, созданного в предыдущем блоке кода.

Сначала мы спустимся в самое левое поддерево — узел -1. Зайдем в его левое поддерево, которого нет, первая конструкция выполнится, ничего не сделав внутри функции. Вызовется обработчик handlerFunction , на узле -1. После этого произойдёт попытка войти в правое поддерево, которого нет. Работа функции для узла -1 завершится.

В вызов для узла -1 мы пришли через вызов функции _inorderInternal для левого поддерева узла 1. Вызов для левого поддерева -1 завершился, вызовется обработчик для значения узла 1, после этого — для правого поддерева. Правого поддерева нет, функция для узла 1 заканчивает работу. Выходим в обработчик для корня дерева.

Для корня дерева левое поддерево полностью отработало, происходит переход ко второй строке процедуры обхода — вызов обработчика значения узла. После чего вызов функции для обработчика правого поддерева.

Аналогично продолжая рассуждения, и запоминая на какой строке для определенного узла мы вошли в рекурсивный вызов, можем пройти алгоритм «руками», лучше понимая его работу.

Для обходов в ширину используется дополнительный массив.

Поиск

Операция поиска — вернуть true или false, в зависимости от того, содержится элемент в дереве или нет. Может быть реализована на основе поиска в глубину или ширину, посмотрим на реализацию на основе алгоритма обхода в глубину.

Функция сравнения или получение ключа

До этого мы рассматривали простые данные, для которых определена операция сравнения между ключами. Не всегда возможно реализовать сравнение таким простым образом.

Можно сделать функцию, которая будет получать ключ из данных, которые хранятся в узле.

Можно передать в конструктор специальную функцию сравнения. Эту функцию можно сделать как обычно делают функции сравнения в программировании, возвращать 0, если ключи равны. Значение больше нуля, если первый переданный объект больше второго, и меньше нуля если меньше. Важно не перепутать когда что возвращается и правильно передать параметры. Например, текущий узел, уже существующий в дереве, первым параметром, а тот, с которым производится текущая операция — вторым.

Для реализации такой возможности потребуется во всех местах сравнения использовать эту функцию

Заключение

Мы познакомились с концепцией двоичных деревьев и операциями для создания такого типа дерева. Эти операции интуитивно понятны, в следующей статье рассмотрим процедуру удаления и скорость работы двоичного дерева.

Источник

Оцените статью
Разные способы