Беспроводной способ передачи электроэнергии проект

Беспроводное электричество: от идеи до реализации

Из всех идей, над которыми работал инженер и физик Никола Тесла, а в этом списке были переменный ток, радио, пульт дистанционного управления (и это в конце XIX века), самой фантастической и трудно осуществимой была передача электрической энергии без проводов. И дело не в том, что сербский изобретатель не знал, как осуществить свой проект. Идея беспроводного электричества, как и электродвигатель, созданный в эпоху бурного развития нефтяной промышленности, не была оценена по достоинству и не получила поддержку от инвесторов и научного сообщества. Спустя десятилетия, когда электроприборы стали неотъемлемой частью нашего быта, система беспроводной передачи электричества (БПЭ) снова будоражит умы инженеров по всему миру. Каких результатов уже удалось достичь, и какие способы используется сегодня?

«Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое оборудование, которое даст вам тепло для приготовления пищи, а свет для чтения. Это оборудование поместиться в небольшой сумке, как обычный чемодан. В ближайшие годы беспроводные светильники будут столь же распространены на фермах, как и обычные электрические светильники в наших городах».

Никола Тесла, «The American Magazine», апрель 1921 года

Беспроводная передача электричества: что это

«Беспроводной» — одно из самых трендовых слов последнего времени: интернет, мобильные телефоны, наушники, зарядные устройства, радио. Эти технологии тоже можно считать видом беспроводной передачи энергии, но в них главенствующая роль отводиться информации (качеству ее передачи, скорости), а в случае с электричеством показателем эффективности является сохранность передаваемой энергии без использования электрической цепи из токопроводящих элементов.

Кто изобрел беспроводное электричество?

Во время выставки в Чикаго в 1893 году Никола Тесла продемонстрировал беспроводное освещение при помощи люминесцентных ламп. Сегодня подобный эксперимент может повторить кто угодно, достаточно встать с лампой дневного света под линией высокого напряжения. А в то время — было похоже на магический сеанс, поэтому пресса и очевидцы вознесли изобретателя на вершину популярности.

Но в научном мире нет единства, что именно Тесла создал беспроводное электричество: считается, что он доработал идею, которую уже развивали другие ученые.

В 1820 году Андре Мари Ампер записал закон, названный впоследствии в его честь, указывающий на то, что во время использования электрического тока образуется магнитное поле.

Спустя 11 лет Майклом Фарадеем был открыт закон индукции: в ходе опыта установил, что магнитное поле, генерируемое в одном проводнике, способно индуцировать ток в другом проводнике.

В 1864 году Джеймс Максвелл объединил имеющиеся теории, и вывел уравнение, описывающее электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

В 1891 году Никола Тесла улучшил передатчик волн, изобретенный Генрихом Герцом тремя годами ранее, и запатентовал его как устройство для радиочастотного энергоснабжения: патент No 454,622; «Система электрического освещения». Параллельно с сербским ученым, исследования электромагнитных волн ведут Александр Попов (Россия), Гульельмо Маркони (Италия), Джагдиш Боше (Индия).

Как работает беспроводное электричество: индукция

Несмотря на то, что последние десятилетия технологии активно развивались, один из самых популярных способов передачи электроэнергии без проводов, мало чем отличается от того, которым пользовался Фарадей. Одна резонансная медная катушка подключается к источнику питания, вторая — играет роль приемника.

Видео работы беспроводного электричества с использованием двух катушек наглядно демонстрирует и простоту технологии, и ее главную проблему – небольшой радиус действия. Также с его помощью невозможно передавать большие объемы энергии (катушки расплавятся) при том, что КПД около 40% (Тесла об этом писал еще в 1899 году).

Однако, нельзя сказать, что магнитная индукция не нашла своего применения. Сегодня технология активно используется для производства беспроводных зарядных устройств. Компания Apple 2017 году презентовала свои беспроводные зарядные устройства, как нечто революционное, хотя фактически этой новинке больше 100 лет.

Беспроводное электричество: популярные технологии

Помимо индукции, на которую делают главные ставки производители электрокаров и гаджетов, известны еще 3 способа: лазеры, микроволны, ультразвук. Ученые убеждены, что каждое из этих направлений может получить развитие в будущем.

  • Лазеры. Энергия передается путем преобразования ее в луч, которые направляется на фотоэлемент приемника. Таким способом можно передавать большие объемы энергии, но эти планы разбиваются об атмосферу Земли, из-за которой большая часть (около 60%) энергии рассеивается. Но в безвоздушных пространствах технология вполне жизнеспособна. Именно поэтому компании, осваивающие космические просторы, продолжают изучение лазерных технологий: в 2009 году NASA даже был организован конкурс с призовым фондом в $900 тыс. по лазерной БПЭ. Первое место заняла Laser Motive: на 1км и 0,5 кВт переданной непрерывной мощности. При том, что конечно цели достигли только 10% энергии, эксперимент назвали успешным.

  • Микроволны. Теоретически радиоволновую передачу энергии можно сделать направленной, используя полупроводники или лампы (циклотронный преобразователь энергии). Полупроводники сейчас активно используются во всем мире, но что касается передачи больших объемов энергии, то необходимо использовать и большее количество полупроводников. Это не только увеличивает стоимость проекта, но и появляется переизлучение, т.е. находиться близко у таких панелей – не безопасно. Но полупроводниковые системы показали высокую эффективность: более 80%. Это доказал еще Вильям Бараун в 1975 году, передав 30 квт на расстояние более 1 км. Создателями циклотронного преобразователя энергии являются советские ученые Владимир Савин и Владимир Ванке, хотя его КПД не превышает 70-80%, надежность достаточно высокая.
  • Ультразвук. Технология была представлена в 2011 году на выставке «The All Things Digital» (D9). Студенты Пенсильванского университета использовали ультразвуковой передатчик и приемник (преобразовывал улавливающее электричество). Радиус действия – около 10 метров. Недостатки: должна быть прямая видимость между «узлами», низкий КПД. Но, передаваемые ультразвуковые частоты, не оказывают воздействия на людей или животных.

Беспроводные зарядные устройства: использование в быту и инфраструктуре

Самым востребованным и популярным девайсом с использованием беспроводной передачи электроэнергии являются зарядные устройства. Это может быть не только смартфон или планшет поддерживающий технологию, но и робот-пылесос, электросамокат, электровелосипед и электрическая зубная щетка.

Универсальность беспроводных зарядок – несомненный плюс технологии. Их создают по стандарту Qi (читается как «Ци»), разработанному Консорциумом беспроводной электромагнитной энергии (Wireless Power Consortium): заряд на расстоянии до 4 см. Samsung и Xiaomi также выпускают универсальные беспроводные зарядки. Кстати, если Samsung EP-PG950 не может заряжать гаджеты через чехол, то для Xiaomi Mi Wireless Charging Pad – это не проблема.

Читайте также:  Способы приобретения права собственности что это такое

Индукционные зарядки для электрических электросамокатов (кикскутеров) устанавливают в Германии. Easy Charge, созданная компаниями Metz и Intis, универсальная и может взаимодействовать с устройствами разных производителей, а благодаря тому, что зарядное выпускается в нескольких модификация (на одно или 5 мест), его можно использовать и в общественных местах.

Джошуа Смит (сотрудник компании Intel) совместно с Марин Солджачич – доцент кафедры физики MIT (Massachusetts Institute of Technology) основали проект WiTricity. Они сосредоточили свои силы на разработке системы БПЭ среднего диапазона, за основу взята магнитно-резонансная связь. В результате в 2017 году появились универсальные беспроводные зарядные устройства для электрокаров DRIVE 11. Приемник устанавливается на днище авто, а передатчики – где угодно (в общественных местах, на станциях заправки или в гаражах владельцев электрокаров).

Автомобильный концерн BMW также запустил продажи беспроводной индуктивной зарядки. Комплект состоит из индукционной зарядной станции – GroundPad, которая подходит для помещений и установки на открытом воздухе, второй элемент — CarPad (система зарядки автомобиля). После того, как авто оказывается над зарядкой, GroundPad генерирует магнитное поле, а CarPad индуцирует электрический ток, который затем передается в аккумулятор. За 3,5 часа батарея будет полностью заряжена. Аналогичную систему концерн разрабатывает и для мотоциклов.

В Швеции в 2018 году появилась целая электрифицированная дорога eRoadArlanda. Это 2-км участок дороги вблизи Стокгольма, с установленными отбойниками-троллеями. Пока электрокар находится над этой линией, подвижные токосъемники заряжают батареи.

Использовать ее могут электрогрузовики, разработанные в рамках проекта eRoadArlanda, в будущем технологию будут совершенствовать, чтобы сделать универсальной.

А вот в норвежском Осло разрабатывают систему бесконтактной подзарядки именно для легковых электромобилей в такси. В рамках государственной программы «ElectriCity» будет реализована зарядная система, которая позволит заряжать аккумуляторы, не теряя рабочего времени: например, пока водитель ожидает новый заказ или ждет клиентов.

Инженеры стартапа Emrod пошли дальше: беспроводная система передачи электроэнергии на большие расстояния уже тестируется в Новой Зеландии. Хотя инженеры Emrod не раскрывают точных деталей своей разработки известно, что технология подразумевает использование микроволнового излучения. Устройству, работающему в широком спектре частот, не обязательно находиться вблизи непосредственных потребителей. Это позволяет электрифицировать удаленные населенные пункты, при этом не производить вырубку деревьев для прокладки линии электропередач. Кроме того, технология должна снизить цену на электроэнергию.

Что касается безопасности, то по заверению создателей, излучение неионизирующее (не наносит вред человеку, животным, растительности). Также для дополнительной защиты установки укомплектованы сигнальным, лазерным лучом малой мощности, который сканирует линию передачи на наличие помех, и в случае их выявления, автоматически останавливает работу устройства. Примерно через полгода можно будет сделать выводы о его эффективности и создании полноценной системы. Примечательно, что поддержку стартапу Emrod оказывает один из главных дистрибьюторов электроэнергии в Новой Зеландии – Powerco. Это говорит о том, что крупные игроки энерго-рынка понимают важность поиска альтернатив в «зеленом» сегменте.

В XIX веке, в котором зарождались и беспроводная энергия и беспроводная связь, приоритет был отдан второму открытию. Возможно, теперь, когда связь уже налажена, ученые уделят внимание беспроводным технологиям передачи энергии, сделав их доступнее и дешевле. Это, в свою очередь, ускорило бы переход от двигателей внутреннего сгорания к электрокарам, решив часть проблем экологии.

Источник

Беспроводная передача энергии на расстоянии(Проект обучающихся 11 класса Денисова А. и Глебов С.)

Мечта о беспроводной передаче энергии и информации возникла у физиков и инженеров с самых первых шагов практической электротехники. О том, что, эта мечта не бесплодна, убедительно свидетельствуют достижения современной радиотехники, обеспечивающей революцию в развитии средств связи. Благодаря радиоволнам мы не только передаем сигналы на любые нужные нам расстояния, но и получаем информацию о самых удаленных областях вселенной. Естественно предположить, что и беспроводная передача энергии принесет человечеству не менее великие достижения.

Просмотр содержимого документа
«Беспроводная передача энергии на расстоянии(Проект обучающихся 11 класса Денисова А. и Глебов С.)»

Беспроводная передача энергии

Ученики 11 «Г» класса

ГБОУ Лицея г.Сызрани

Денисов Артём и Глебов Сергей

Белоусова Елена Валентиновна

Глава I. История беспроводной передачи энергии

Глава II. Технологии передачи энергии

2.2. Метод электромагнитной индукции…………. …..

2.3. Электростатическая индукция………………………

2.4. Микроволновое излучение……………………………

Глава III. Всемирная беспроводная система.

Актуальность изучаемой темы.

Мечта о беспроводной передаче энергии и информации возникла у физиков и инженеров с самых первых шагов практической электротехники. О том, что, эта мечта не бесплодна, убедительно свидетельствуют достижения современной радиотехники, обеспечивающей революцию в развитии средств связи. Благодаря радиоволнам мы не только передаем сигналы на любые нужные нам расстояния, но и получаем информацию о самых удаленных областях вселенной. Естественно предположить, что и беспроводная передача энергии принесет человечеству не менее великие достижения.

Трудности беспроводной передачи энергии пропорциональны её передаваемому количеству. Ведь даже передача большого количества энергии по проводам уже представляет собой настолько сложную задачу, что для ее решения требуются предельные возможности техники. Но именно трудности проводной передачи заставляют искать пути отказа от нее. Сегодня необходимость таких поисков начинают осознавать многие, хотя для большинства данная задача кажется фантастической. Но не так давно фантастичной казалось задача освоения космоса, поставленная Циолковским.В электротехнике тоже был свой гений, живший, как и Циолковский, намного впереди своего века, — Никола Тесла, сербский учёный, живший и работавший в США. Именно его эксперименты и доказывают реальность беспроводной передачи энергии.

Актуальность выбранной темы обосновывается тем, что на сегодняшний день потребление электроэнергии возрастает с каждым днем и вся эта нагрузка ложится на передающие линии. Это в свою очередь требует постоянной модернизации электросетей, а значит новых затрат.

Цель нашей работы заключается в изучении альтернативных методов, способов и технологий передачи энергии, таких как беспроводная передача.

Основные задачи работы:

− Проанализировать научно−методическую литературу по вопросам передачи энергии альтернативным способом.

− Собрать действующую модель.

− Выяснить возможность передачи энергии без проводов на практике.

Глава I. История беспроводной энергии.

С самого начала открытия электричества возникла проблема его передачи конечному потребителю. Развитие промышленного производства привело к резкому увеличению спроса на электроэнергию. Провода и столбы линий электрических передач стали неотъемлемым элементом пейзажей. Но только специалисты знают, сколько средств и усилий тратится на поддержание этих линий в работоспособном состоянии, и сколько энергии в них теряется, прежде чем она дойдёт до потребителя.

Ископаемые ресурсы постепенно иссякают, и проблемы энергообеспечения становятся всё существенней. Современное человеческое общество вошло в эру освоения космоса, поэтому наши взгляды обращаются к очевидному источнику неисчерпаемой энергии – Солнцу. Этот термоядерный реактор миллиардами лет излучает невероятное количество энергии, малой части которой хватило бы человечеству на долгие годы. Но возникает вопрос: как передать полученную энергию потребителю на Землю?

С этого момента и начинается серьезный разговор о возможностях осчастливить человечество неограниченными ресурсами. До недавнего времени в перечне средств современных космических технологий было два пути решения проблемы. Один связан с передачей энергии лазерными лучами на наземные приемные терминалы. Второй — с передачей энергии СВЧ-излучением.

Читайте также:  Целесообразные способы решения педагогических задач

Передача энергии лазерным излучением сталкивается с несколькими принципиальными трудностями. Первая связана с эффективностью первичного преобразования излучения Солнца в когерентное лазерное излучение. А вторая упирается в КПД передачи энергии из космоса на Землю. По первой проблеме наметился прогресс: ученые из Японии сообщили о преобразовании энергии Солнца в излучение лазера с КПД, равным 42%. Но передача энергии на поверхность сопряжена с рядом задач, которые с трудом поддаются решению.

Ослабление лазерного луча, диаметр которого у поверхности Земли может составлять сотни метров. Его интенсивность зависит от погодных условий, точности наведения на приемный терминал и еще массы параметров. Пролетающие самолеты или стаи птиц, попавших в силовой луч, исказят или ослабят его мощность. Если для самолета подобный инцидент пройдет незаметно, то птицы пострадают значительно: интенсивность излучения вблизи поверхности Земли будет в десятки раз мощнее полуденного Солнца.

Второй путь передачи энергии – это радиоволны СВЧ диапазона с частотами от 2,4 до 5,8ГГц. Здесь существует атмосферное «окно», в котором ослабление энергии минимально. Но приемная часть энергии очень сложна и требует разработки современных компонент антенны. По оценкам ученых, для передачи с высоты 36000 км (геостационарная орбита) мощности 5 МВт, потребуется передающая антенна размером 1 км и приемная в поперечнике 10 км. Такие сооружения в ближайшее время для человечества не по карману.

В этой ситуации прогресс начался с другой стороны. Развитие современных средств связи и мобильных вычислительных устройств потребовал частой подзарядки их аккумуляторов. В принципе, особой проблемы это не представляет, особенно когда у вас одно или два таких устройства. Но если в семье или офисе их десятки, то непрерывный поиск зарядных блоков, совместимых с изделиями, отвлекает и раздражает.

Именно это обстоятельство натолкнуло учёного Марина Солячича, сотрудника Массачусетского университета, на идею способа передачи энергии без проводов. После того, как его среди ночи несколько раз разбудил сигнал разряженного мобильного телефона, он решил серьезно заняться проблемой беспроводной зарядки своих мобильных устройств.

В результате появилась совершенно новая технология передачи энергии из сети в мобильные устройства. Метод заключается в резонансном связывании с помощью магнитного поля приемника и передатчика. За непонятным названием и не менее неясным механизмом (метод запатентован и держится в секрете), скрывается способ передачи энергии без проводников с эффективностью более 40%. Технология получила название «WiTricity».

Помимо этих способов, существует ряд других, которые мы и рассмотрим в дальнейшем.

Глава II. Технологии беспроводной передачи.

2.1. Ультразвуковой способ.

Ультразвуковой способ передачи энергии изобретён студентами университета Пенсильвании и впервые широкой публике представлен на выставке «The All Things Digital» (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, использовался приёмник и передатчик. Передатчик излучал ультразвук; приёмник, в свою очередь, преобразовывал слышимое в электричество. Так как способ относительно новый,конкретных цифр мало:

расстояние передачи достигает 7-10 метров;

о необходимости прямой видимости приёмника и передатчика информация разнится в различных источниках. Но по логике она не очень нужна – стены прекрасно проводят ультразвук;

передаваемое напряжение — до 8 вольт, но сила тока или мощность — неизвестны;

используемые ультразвуковые частоты никак не действуют на человека;

также нет сведений и об отрицательном воздействии на животных. Хотя эта информация подвергается сомнению: в докладе говорится, что крыс отгонять не получится. Наверняка это зависит от частоты ультразвука и здесь надо проводить дополнительные исследования.

Почему стоит обратить внимание на эту технологию?

Потому что, в отличие от других, здесь не используются электромагнитные явления, и потому будет меньше радиошума. То есть нет опасности того, что зарядное устройство будет мешать обмениваться информацией между датчиками и устройствами.

Данная технология уже используется на практике компанией uBeam, которая представила свою беспроводную зарядку для различных устройств в прошлом году.

2.2. Метод электромагнитной индукции.

При беспроводной передаче энергии методом электромагнитной индукции используется ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери всё же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создаёт переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, всё большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция. Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щёток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приёмник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приёмник настроены на одну частоту. Производительность может быть улучшена ещё больше путём изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приёмная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких, как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приёмника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi.

Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких, как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющемуся беспроводным передатчиком электрической энергии.

2.3. Электростатическая индукция.

Электростатическая или ёмкостная связь представляет собой прохождение электроэнергии через диэлектрик. На практике это градиент электрического поля или дифференциальная ёмкость между двумя или более изолированными клеммами, пластинами, электродами или узлами, возвышающимися над проводящей поверхностью. Электрическое поле создается за счёт заряда пластин переменным током высокой частоты и высокого потенциала. Ёмкость между двумя электродами и питаемым устройством образует разницу потенциалов.

Читайте также:  Способ решения квадратных неравенств системой

Электрическая энергия, передаваемая с помощью электростатической индукции, может быть использована в приёмном устройстве, например, таком, как беспроводные лампы. Тесла продемонстрировал беспроводное питание ламп освещения энергией, передаваемой переменным электрическим полем.

Вместо того чтобы полагаться на электродинамическую индукцию для питания лампы на расстоянии, идеальным способом освещения зала или комнаты будет создание таких условий, при которых осветительный прибор можно было бы переносить и размещать в любом месте, и он работал, независимо от того, где он находится, и без проводного подключения. Можно продемонстрировать это, создав в помещении мощное переменное электрическое поле высокой частоты. Для этой цели можно прикрепить изолированную металлическую пластину к потолку и подключить её к одной клемме индукционной катушки, другая клемма заземлена. В другом случае подключаются две пластины, каждую к разным концам индукционной катушки, тщательно подобрав их размеры. Газоразрядная лампа может перемещаться в любое место помещения между металлическими пластинами или даже на некоторое расстояние за ними, излучая при этом свет без перерыва.

Принцип электростатической индукции применим к методу беспроводной передачи. В случаях, когда требуется передача небольшого количества энергии, необходимость в расположении электродов на возвышении снижается, особенно в случае токов высокой частоты, когда достаточное количество энергии может быть получено терминалом путём электростатической индукции из верхних слоев воздуха, создаваемой передающим терминалом.

2.4. Микроволновое излучение.

Радиоволновую передачу энергии можно сделать более направленной, значительно увеличив расстояние эффективной передачи энергии путём уменьшения длины волны электромагнитного излучения, как правило, до микроволнового диапазона. Для обратного преобразования микроволновой энергии в электричество может быть использована ректенна (устройство, представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока. Простейшим вариантом конструкции может быть полуволновый вибратор, между плечами которого устанавливается устройство с односторонней проводимостью, например, диод), эффективность преобразования энергии которой превышает 95 %. Данный способ был предложен для передачи энергии с орбитальных солнечных электростанций на Землю и питания космических кораблей, покидающих земную орбиту.

Сложностью в создании энергетического микроволнового луча является то, что для использования его в космических программах из-за дифракции, ограничивающей направленность антенны, необходима диафрагма большого размера. Например, согласно исследованию НАСА 1978 года, для микроволнового луча частотой 2,45 ГГц понадобится передающая антенна диаметром в 1 км, а приёмной ректенны диаметром в 10 км. Эти размеры могут быть снижены путём использования более коротких длин волн, однако короткие волны могут поглощаться атмосферой, а также блокироваться дождём или каплями воды. Из-за «проклятия узкого пучка» невозможно сузить луч, объединяя пучки от нескольких меньших спутников без пропорциональной потери в мощности. Для применения на земле антенна диаметром 10 км позволит достичь значительного уровня мощности при сохранении низкой плотности пучка, что важно по соображениям безопасности для человека и окружающей среды. Безопасный для человека уровень плотности мощности составляет 1 мВт/см 2 , что на площади круга диаметром 10 км соответствует мощности в 750 МВт. Этот уровень соответствует мощности современных электростанций.

Японский исследователь Хидэцугу Яги исследовал беспроводную передачу энергии с помощью созданной им направленной антенной решётки. В феврале 1926 года им была опубликована работа об устройстве, известном сейчас как антенна Яги. Хотя она оказалась неэффективной для передачи энергии, сегодня её широко используют в радиовещании и беспроводных телекоммуникациях из-за её превосходных рабочих характеристик.

В 1945 году советский учёный Семён Тетельбаум опубликовал статью, в которой впервые рассматривал эффективность микроволновой линии для беспроводной передачи электроэнергии. После Второй мировой войны, когда началось развитие мощных СВЧ-излучателей, известных под названием магнетрон, идея использования микроволн для передачи энергии была развита.

В 1964 году был продемонстрирован миниатюрный вертолёт, к которому энергия передавалась с помощью СВЧ-излучения.

Беспроводная передача энергии высокой мощности с использованием микроволн подтверждена экспериментально. Опыты по передаче десятков киловатт электроэнергии проводились в обсерватории Голдстоун (Goldstone, штат Калифорния) в 1975 году и в 1997 году в Гранд Бассине (Grand Bassin) на острове Реюньон. В ходе экспериментов достигнута передача энергии на расстояние порядка одного километра.

Экспериментами по беспроводной передаче энергии с помощью СВЧ-излучения занимался также академик Пётр Капица.

2.5. Лазерный метод

В том случае, если длина волны электромагнитного излучения приближается к видимой области спектра (от 10 мкм до 10 нм), энергию можно передать путём её преобразования в луч лазера, который затем может быть направлен на фотоэлемент приёмника.

Лазерная передача энергии по сравнению с другими методами беспроводной передачи обладает рядом преимуществ:

передача энергии на большие расстояния (за счёт малой величины угла расходимости между узкими пучками монохроматической световой волны);

удобство применения для небольших изделий (благодаря небольшим размерам твердотельного лазера — фотоэлектрического полупроводникового диода);

отсутствие радиочастотных помех для существующих средств связи, таких, как Wi-Fi и сотовые телефоны (лазер не создаёт таких помех);

возможность контроля доступа (получить электроэнергию могут только приёмники, освещённые лазерным лучом).

У данного метода есть и ряд недостатков:

преобразование низкочастотного электромагнитного излучения в высокочастотное, которым является свет, неэффективно. Преобразование света обратно в электричество также неэффективно, так как КПД фотоэлементов достигает 40-50 %, хотя эффективность преобразования монохроматического света значительно выше, чем эффективность солнечных панелей;

потери в атмосфере;

необходимость прямой видимости между передатчиком и приёмником (как и при микроволновой передаче).

Технология передачи мощности с помощью лазера ранее, в основном, исследовалась при разработке новых систем вооружений и в аэрокосмической промышленности, а в настоящее время разрабатывается для коммерческой и потребительской электроники в маломощных устройствах. Системы беспроводной передачи энергии с применением в потребительских целях должны удовлетворять требованиям лазерной безопасности стандарта IEC 60825. Для лучшего понимания лазерных систем следует принимать во внимание то, что распространение лазерного луча гораздо в меньшей степени зависит от дифракционных ограничений, как пространственное и спектральное согласование характеристик лазеров позволяют увеличить рабочую мощность и дистанцию, как длина волны влияет на фокусировку.

Драйденский лётно-исследовательский центр НАСА продемонстрировал полёт лёгкого беспилотного самолёта-модели, питаемого лазерным лучом. Это доказало возможность периодической подзарядки посредством лазерной системы без необходимости приземления летательного аппарата.

Кроме того, подразделение НАСА, названное «Litehouse DEV», совместно с Университетом штата Мэриленд разрабатывает лазерную систему питания небольших БПЛА, безопасную для глаз.

С 2006 года компания PowerBeam, изобретшая лазерную технологию, безопасную для глаз, также разрабатывает готовые для коммерческого применения узлы для различных потребительских и промышленных электронных устройств.

В 2009 году в соревновании НАСА по передаче энергии лазером первое место и приз в $900 тыс. получила компания LaserMotive, продемонстрировав собственную разработку, способную действовать на расстоянии в один километр. Лазер победителя смог передать мощность в 500 Вт на расстояние в 1 км с 10 % КПД.

Источник

Оцените статью
Разные способы