Базовый способ исчисления динамики

Вопрос 3. Показатели динамики. Методы расчета

Показатели динамики – это величины, характеризующие изменение уровней динамического ряда. К ним относятся: абсолютный прирост, коэффициент (темп) роста, коэффициент (темп) прироста.

В зависимости от базы сравнения различают базисные и цепные показатели динамики. Базисные показатели динамики – это результат сравнения текущих уровней с одним фиксированным уровнем, принятым за базу, они характеризуют окончательный результат всех изменений в уровнях ряда за период от базисного до текущего уровня. Обычно за базу сравнения принимают начальный уровень динамического ряда. Цепные показатели динамики – это результат сравнения текущих уровней с предшествующими, они характеризуют интенсивность изменения от срока к сроку.

Методы расчета показателей динамики в зависимости от базы сравнения показаны в таблице:

Показатели динамики Базисные Цепные
Абсолютный прирост Аt Аt=xt–x0 аt= xt–xt–1
Коэффициент роста It It= xt/x0 it= xt/xt-1
Темп роста It×100% It×100% it×100%
Коэффициент прироста Кt Кt=(xt–x0)/x0= It–1 kt=(xt–xt-1)/xt-1=it–1
Темп прироста Кt×100% Кt×100% kt×100%
t> – уровни динамического ряда; х0 – базисный уровень.

Абсолютный прирост характеризует на сколько единиц уровень текущего периода больше или меньше уровня базисного или предыдущего периода. Он измеряется в тех же единицах, что и уровни ряда.

Коэффициент роста показывает во сколько раз уровень текущего периода больше или меньше базисного или предыдущего. Этот показатель, выраженный в процентах, называют темпом роста.

Темп прироста показывает на сколько процентов текущий уровень больше или меньше базисного или предыдущего.

Определяя цепные показатели динамики, получают ряд варьирующих, отчасти независимых величин, для которых можно определить средние характеристики. Предварительно необходимо рассмотреть взаимосвязь базисных и цепных показателей динамики, используя уже принятые обозначения:

Средний абсолютный прирост определяется как среднее арифметическое из абсолютных приростов за отдельные периоды времени динамического ряда:

где n – число приростов.

Средний коэффициент роста определяется как среднее геометрическое из коэффициентов роста за отдельные периоды времени динамического ряда:

Среднегодовой темп прироста определяют исходя из среднего темпа роста:

Источник

Показатели анализа рядов динамики

Что такое ряд динамики в статистике, и какие они бывают, мы рассмотрели в первой части этой темы. Теперь поговорим об анализе рядов динамики. Как уже отмечалось, ряды динамики характеризуют развитие явление во времени, а это развитие подлежит изучению. Ведь статистику интересует, как это явление развивается, какие есть тенденции (тренды) в развитии явления. Или наоборот тенденций нет.

Именно для целей изучения динамики или скорости изменений во временных периодах и используются показатели анализа рядов динамики.

Но прежде чем мы перейдем к самим показателям и формулам их расчета необходимо уточнить важнейший момент.

Анализ рядов динамики

Дело в том что сам анализ может проводиться двумя способами, в зависимости от того как и с чем мы будем проводить сравнение уровней ряда. Если мы хотим сравнить с каким-то одним данным это один способ, а если с непосредственно предшествующим, то это уже другой способ расчета.

Как правило, расчет проводится сразу и тем и другим способом, если мы говорим о полноценном исследовании.

  1. Расчет показателей анализа рядов динамики С ПОСТОЯННОЙ БАЗОЙ СРАВНЕНИЯ (БАЗИСНЫЕ показатели) – каждый уровень рядя сравнивается с одним и тем же уровнем выбранным за базу сравнения.

Например: база сравнение 2005 год, а уровни, начиная с 2006 по 2009, тогда получаем следующую последовательность расчетов уровень 2006 года с уровнем 2005 года, 2007 – с 2005, 2008 – с 2005 и 2009 – с 2005.

  1. Расчет показателей анализа рядов динамики С ПЕРЕМЕННОЙ БАЗОЙ СРАВНЕНИЯ (ЦЕПНЫЕ показатели) – в данном случае каждый уровень ряда сравнивается с тем который стоит перед ним, получается такое цепное сравнение или цепь расчетов взаимно перетекающих друг в друга, поэтому и второе название способа ЦЕПНЫЕ показатели анализа рядов динамики.
Читайте также:  Вяжем мочалки простым способом

Например: имеем уровни начиная с 2005 по 2009 годы, тогда получаем следующую последовательность расчетов уровень 2006 года с уровнем 2005 года, 2007 – с 2006, 2008 – с 2007 и 2009 – с 2008.

Вот такие нехитрые расчеты. А теперь можем перейти к самим показателям анализа. Следует сказать, что эти показатели условно можно разделить на две группы:

— простые показатели анализа рядов динамики рассчитываются по каждому уровню ряда;

— обобщающие или средние показатели анализа рядов динамики они рассчитываются для всего ряда в целом, собственно как и любые средние величины.

А вот самих показателей всего пять.

  1. Абсолютный прирост – рассчитывается путем вычитания из текущего уровня базисного или предшествующего уровня, то есть простое математическое вычитание. В отличие от всех других показателей абсолютный прирост имеет те же единицы измерения, что и исходный уровень ряда. Может получиться отрицательным.
  2. Коэффициент роста – рассчитывается делением текущего уровня на базисный или предшествующий уровень. Показывает во сколько раз данный уровень больше или меньше базисного. Поскольку это относительная величина, то наименование у коэффициента роста нет.
  3. Темп роста – рассчитывается умножением коэффициента роста на 100%. Показывает, сколько процентов данный уровень составляет по отношению к базисному. Выражается в процентах.
  4. Темп прироста – рассчитывается вычитанием из темпа роста 100%. Показывает на сколько процентов данный уровень больше или меньше базисного. Выражается в процентах. Может получиться отрицательным.
  5. Абсолютное значение одного процента прироста – рассчитывается из имеющихся уже абсолютного прироста и темпа прироста путем деления первого на второй. Получаем как раз размер 1 % прироста, но в абсолютно выражении. Следует сказать, что данный показатель носит больше статистический характер и в широкой практике используется нечасто.

Формулы для анализа рядов динамики

Ниже в сводной таблице представим все формулы простых показателей анализа рядов динамики с постоянной и переменной базой сравнения.

Обобщающие показатели анализа рядов динамики имеют практически похожие названия, и выполняют роль средневзвешенных показателей, для упрощения анализа. Их также пять:

  1. Средний абсолютный прирост.
  2. Средний коэффициент роста – рассчитывается по формуле средней геометрической.
  3. Средний темп роста.
  4. Средний темп прироста.
  5. Среднее значение одного процента прироста.

Формулы для расчета вышеуказанных показателей сведем в общую таблицу. Также для полноты картины приведем и формулы расчета средних уровней, которые были разобраны в первой части.

Задание. Для закрепления прочитанного материала попытайтесь решить вот такую задачу. По представленным данным проведи все возможные расчеты.

Год Выпуск продукции, млн. руб.
2010 219,7
2011 221,4
2012 234,2
2013 254,1
2014 241,8
Итого 1171,2

А для простоты можно воспользоваться вот такой таблицей для занесения итоговых расчетов.

Год y Δ К Тр Тпр α
Б Ц Б Ц Б Ц Б Ц Б Ц
2010 219,7
2011 221,4
2012 234,2
2013 254,1
2014 241,8

Если вам что-то не понятно, вы всегда можете спросить в комментариях или написать в нашу группу вконтакте! А также вы можете выслать туда решение, чтобы мы проверили его!

Источник

13 Ряды динамики

Статистическое изучение динамики социально-экономических явлений

Процессы и явления социально-экономической жизни общества, являющиеся предметом изучения статистики, находятся в постоянном движении и изменении. Для того, чтобы выявить тенденции и закономерности социально-экономического развития явлений, статистика строит особые ряды статистических показателей, которые называются рядами динамики (иногда их называют временными рядами), то есть ‑ это ряды изменяющихся во времени значений статистического показателя, расположенных в хронологическом порядке. В англоязычной литературе для временных рядов используется термин «time series». Ряды динамики получаются в результате сводки и обработки материалов периодического статистического наблюдения. Повторяющиеся во времени (по отчетным периодам) значения одноименных показателей в ходе статистической сводки систематизируются в хронологической последовательности. Значения показателя, составляющие ряд динамики, называются уровнями ряда.

Каждый ряд динамики характеризуется двумя параметрами: значениями времени и соответствующими им значениями уровней ряда. Уровни ряда обычно обозначаются «yt»: y1, y2 и т.д. В качестве показателя времени в рядах динамики могут указываться отдельные периоды (сутки, месяцы, кварталы, годы и т.д.) времени или определенные моменты (даты). Время в рядах динамики обозначается через «t».

Читайте также:  Способы обхода преимущественного права покупки

Ряд динамики состоит из двух элементов:

1) уровня ряда (значения изучаемого показателя);

2) моментов (периодов) времени, когда фиксируется этот показатель.

Основные способы обработки рядов динамики:

1) укрупнение интервалов и расчет для них средних показателей;

2) сглаживание уровней способом скользящей средней;

3) выравнивание по аналитическим формулам.

Суть последнего способа заключается в том, что по эмпирическим данным находят теоретические (вероятностные) уровни, которые рассматриваются как некая функция времени.

Ряды динамики, как правило, представляют в виде таблицы или графически.

Ряды динамики могут быть классифицированы по следующим признакам:

В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и средних величин. При этом ряды динамики абсолютных величин рассматриваются как исходные, а ряды относительных и средних величин ‑ как производные.

Ряды динамики абсолютных величин наиболее полно характеризуют развитие процесса или явления, например, грузооборота транспорта, инвестиций в основной капитал, добычи топлива, уставного капитала коммерческих банков и т.д.

Ряды относительных величин могут характеризовать во времени темпы роста (или снижения) определенного показателя; изменение удельного веса того или иного показателя в совокупности или изменение показателей интенсивности отдельных явлений, например, удельного веса приватизированных предприятий в той или иной отрасли; производ­ства продукции на душу населения; структуры инвестиций в основной капитал по отраслям экономики, индекса потребительских цен и т.д.

Ряды динамики средних величин служат для характеристики изменения уровня явления, отнесенного к единице совокупности, например: данные о среднегодовой численности занятых в экономике; о средней урожайности отдельных сельскохозяйственных культур, о средней заработной плате в отдельных отраслях и т.д.

В зависимости от характера временного параметра ряды динамики делятся на моментные и интервальные.

Уровни моментных рядов динамики характеризуют явление по состоянию на определенный момент времени.

Пример. Моментный ряд динамики, характеризующий численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г., представлен в таблице 13.1.

Таблица 13.1 ‑ Численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г

Дата 1.01 1.02 1.03 1.04 1.05 1.06
Численность персонала, чел. 780 810 880 930 940 970

Следует помнить, что моментные ряды абсолютных величин нельзя суммировать. Бессмысленно, например, складывать численность персонала по состоянию на 1 января, 1 февраля и т.д. Полученная сумма ничего не выражает, так как в ней многократно повторяются одни и те же единицы совокупности.

Ряд, в котором уровни характеризуют результат, накопленный или вновь произве­денный за определенный интервал времени, называется интервальным.

Пример. Интервальный ряд динамики, представлен в таблице 13.2.

Таблица 13.2. ‑ Характеристика динамики объема розничного товарооборота

Дата 2004 2005 2006 2007 2008
Товарооборот, млн. руб. 28,3 31,9 38,3 42,3 45,2
Читайте также:  Rocs medical minerals гель способ применения

Важное аналитическое отличие моментных рядов от интервальных состоит в том, что сумма уровней интервального ряда вполне реальный показатель, например, общий объем розничного товарооборота за 2004-2008 г.г.

В зависимости от расстояния между уровнями, ряды динамики подразделяются на ряды с равноотстоящими уровнями и не равноотстоящими уровнями во времени.

Ряды динамики следующих друг за другом периодов или следующих через оп­ределенные промежутки дат называются равноотстоящими, пример (табл. 13.1 и табл. 13.2).

Если же в рядах даются прерывающиеся периоды или неравномерные промежутки между датами, то ряды называются не равноотстоящими, пример(табл. 13.3).

Пример. Рядом динамики с не равноотстоящими уровнями во времени может служить объем экспорта продукции предприятия, представленный в таблице 13.3.

Таблица 13.3. – Динамика объема экспорта продукции предприятия

Годы 1993 1996 1998 2000 2004
Объем экспорта, млн. долл. 1110 1220 1320 1450 1640

По числу показателей можно выделить изолированные (одномерные) и комплексные (многомерные) ряды динамики.

Если ведется анализ во времени одного показателя ряда, то ряд динамики изолированный (например, данные о производст­ве газа по годам). В многомерном ряду представлена динамика нескольких показателей, характеризующих одно явление.

Сопоставимость уровней и смыкание рядов динамики

Важнейшим условием правильного построения рядов динамики является сопоста­вимость всех входящих в него уровней. Данное условие решается либо в процессе сбора и обработки данных, либо путем их пересчета.

Рассмотрим основные причины несопоставимости уровней ряда динамики.

Несопоставимость уровней ряда может возникнуть вследствие изменения единиц измерения и единиц счета.

Пример. Нельзя сравнивать и анализировать цифры о производстве тканей, если за одни годы оно дано в погонных метрах, а за другие ‑ в квадратных метрах.

На сопоставимость уровней ряда динамики непосредственно влияет методоло­гия учета или расчета показателей.

Например, если в одни годы среднюю урожайность считали с засеянной площади, а в другие ‑ с убранной, то такие уровни будут не­сопоставимы.

В процессе развития во времени, прежде всего, происходят количественные измерения явлений, а затем на определенных ступенях совершаются качественные скачки, приводящие к изменению закономерностей явления. Поэтому научный подход к изучению рядов динамики заключается в том, чтобы ряды, охватывающие большие периоды времени, разделять на такие, которые бы объединяли лишь однокачественные периоды развития совокупности, характеризующейся одной закономерностью развития.

Важно также, чтобы в ряду динамики интервалы или моменты, по которым определены уровни, имели одинаковый экономический смысл.

Например, при изучении роста поголовья скота бессмысленно сравнивать цифры поголовья по состоянию на 1 октября с данными 1 января, так как первая цифра включает не только скот, оставшийся на зимовку, но и предназначенный к убою, а вторая цифра включает только скот, оставленный на зимовку. Уровни ряда динамики могут оказаться несопоставимыми по кругу охватываемых объектов вследствие перехода ряда объектов из одного подчинения в другое.

Несопоставимость уровней ряда может возникнуть вследствие изменений территориальных границ областей, районов и так далее.

Для того, чтобы привести уровни ряда динамики к сопоставимому виду, иногда приходится прибегать к приему, который носит название смыкание рядов динамики. Под смыканием понимают объединение в один ряд (более длинный) двух или нескольких рядов динамики, уровни которых являются несопоставимыми. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах).

Пример. Предположим, что в N-ом регионе имеются данные об общем объеме оборота розничной торговли за 2013-2015 гг. в фактически действующих ценах, и за 2015-2018 гг. ‑ в сопоставимых ценах (табл. 13.4.).

Таблица 13.4 ‑ Динамика общего объема оборота розничной торговли (млрд. руб.) цифры условные

Источник

Оцените статью
Разные способы