Статистика: Учебник / Под ред. Елисеевой.- М., 2006. С. 168-172
Оглавление
Показатели динамики (цепные и базисные)
Показатели динамики нашли широкое применения для формирования более наглядного представления о тенденции изменения уровней динамического ряда. Рост и снижение уровня ряда могут происходить либо равномерно, либо ускоренно, либо замедленно. Аналитические возможности показателей динамики раскрывает следующий фрагмент из учебника «Статистика»:
«Уровни временного ряда могут изменяться в самых разных, направлениях: они могут возрастать или убывать, повторять ранее достигнутый уровень. Интенсивность их изменения бывает различной. Уровни ряда могут изменяться быстрее или медленнее. Для характеристики развития явления во времени применяются следующие показатели:
абсолютные приросты (у);
темпы роста (Тр);
темпы прироста (снижения) (Тр);
абсолютное ускорение или замедление ();
относительное ускорение (Тр).
Абсолютный прирост (абсолютное изменение) уровней ряда рассчитывается как разность двух уровней. Он показывает, на сколько единиц уровень одного периода больше или меньше уровня другого периода.
В зависимости от базы сравнения абсолютные приросты могут быть цепными и базисными:
Если каждый последующий уровень ряда динамики сравнивается со своим предыдущим уровнем, то прирост называется цепным. Если же в качестве базы сравнения выступает за ряд лет один и тот же период, то прирост называется базисным.
Один и тот же по величине абсолютный прирост может означать разную интенсивность изменения уровней (см. табл. 9.4).
Годы
Произведено продукция, тыс. шт.
Абсолютные приросты, тыс. шт.
Темпы роста, %
Темпы прироста, %
Абсолютное значении 1 % прироста, тыс. шт.
цепные
базисные
цепные
базисные
базисные
В нашем примере в 1996 и 1998 гг. абсолютное изменение объема продукции было одинаковым — 5 тыс. шт., но интенсивность роста объема произведенной продукции в эти годы была различной: в 1996 г. прирост в 5 тыс. ед. по сравнению с предыдущим годом составил 25%, а в 1998 г. по сравнению с предыдущим годом — лишь 14,3%. Аналогично один и тот же прирост в 10 тыс. ед. для 1997 и 1999 гг. означает разную интенсивность роста: в 1997 г. — прирост составил по сравнению с предыдущим годом, 40%, а в 1999 г. – 25%.
Интенсивность изменения уровней временного ряда характеризуется темпами роста и прироста.
Темп роста есть отношение двух уровней ряда. Как и абсолютные приросты, темпы роста могут рассчитываться как цепные и как базисные:
Если база сравнения по периодам меняется, то найденные темпы роста называются цепными. Если же база сравнения по периодам неизменна (y0), то темпы роста называются базисными.
Темпы роста, выраженные в коэффициентах, принято называть коэффициентами роста:
В анализе используется один из этих показателей: либо темп роста, либо коэффициент роста, ибо экономическое их содержание одно и то же, но по-разному выражено: в % (Тр) и в разах (Кр). Так по данным табл. 9.4 можно сделать вывод, что наибольшая интенсивность роста была достигнута в 1997 г., когда темп роста составил 140%, или в 1,4 раза превысил уровень предыдущего года.
Если цепные темпы роста характеризуют интенсивность изменения уровней от года к году (от месяца к месяцу), то базисные темпы роста фиксируют интенсивность роста, (снижения) за весь интервал времени между текущим и базисным уровнями. Так в примере базисный темп роста за весь период с 1996 по 1999 г. составил 250% (1995 г. взят за базу сравнения).
Темп прироста есть отношение абсолютного прироста к предыдущему уровню динамического ряда (цепной показатель) и к уровню, принятому за базу сравнения по динамическому ряду (базисный показатель):
По данным табл. 9.4, темп прироста для 1999 г. составит: цепной — 25% (·100) и базисный – 150% (·100), т.е. в 1999 г. объем продукции увеличился по сравнению с 1998 г. на 25%, а в целом за весь рассматриваемый период прирост составил 150%.
Между цепными и базисными показателями изменения уровней ряда существует следующая взаимосвязь:
сумма цепных абсолютных приростов равна базисному приросту (см. табл. 9.4, где в итоговой строке накопленный прирост за 1996 — 1999 гг. – 30 тыс. шт. – совпадает с базисным абсолютным приростом для 1999 г.);
произведение цепных коэффициентов роста равно базисному или равносильное этому деление рядом стоящих базисных коэффициентов роста друг на друга равно цепным коэффициентам роста. Так, по данным табл. 9.4, имеем:
, или 250% – базисный темп роста;
200/175=1,143, или 114,3% – цепной коэффициент роста для 1998 г. Взаимосвязь цепных и базисных темпов (коэффициентов) роста позволяет при анализе, если необходимо, переходить от цепных показателей к базисным и наоборот;
темп прироста связан с темпом роста: (см. табл. 9.4, где темпы прироста меньше темпов роста на 100). Поэтому при анализе обычно приводится какой-то один из них: темп роста либо темп прироста. Зная цепные темпы прироста, можно определить базисный темп прироста. Для этого нужно от темпов прироста перейти к темпам (коэффициентам) роста и далее воспользоваться указанной выше взаимосвязью коэффициентов роста.
Так, например, изменение цен на потребительские товары и услуги за I квартал 2001 г. оказалось в Санкт-Петербурге следующим (см. гл. 9.5).
Изменение цен (в % к предыдущему месяцу)
В целом за I квартал прирост цен составит:
, т.е. в марте 2001 г. по сравнению с декабрем 2000 г. цены выросли на 7,4%.
Чтобы знать, что скрывается за каждым процентом прироста, рассчитывается абсолютное значение 1% прироста как отношение абсолютного прироста уровня за интервал времени к темпу прироста за тот же промежуток времени:
или
Иными словами, абсолютное значение 1% прироста в данном периоде есть сотая часть достигнутого уровня в предыдущем периоде (см. табл. 9.4, последнюю графу). В связи с этим расчет абсолютного значения 1% прироста базисным методом не имеет смысла, ибо для каждого периода это будет одна и та же величина – сотая часть уровня базисного периода.
Абсолютные приросты показывают скорость изменения уровней ряда в единицу времени. Если они систематически возрастают, то ряд развивается с ускорением. Величина абсолютного ускорения определяется как т.е. по аналогии с цепным абсолютным приростом, но сравниваются между собой не уровни ряда, а их скорости. По табл. 9.4 в нашем примере ускорение имело место лишь в 1997 и в 1999 гг., когда =10-5=5 тыс. шт.
Если систематически растут цепные темпы роста, то ряд развивается с относительным ускорением. Относительное ускорение можно определить как разность следующих друг за другом темпов роста или прироста:
или
Полученная величина выражается в процентных пунктах (п.п.). По данным табл. 9.4, относительное ускорение имело место лишь в 1997 г.– 15 процентных пунктов по сравнению с предыдущим годом.
Относительное ускорение может быть измерено и с помощью коэффициента опережения.
Коэффициент опережения определяется как отношение последующего темпа роста к предыдущему:
В нашем примере коэффициент опережения для 1997 г. составил:
140/125=1,12, что означает, что в 1997 г. темп роста был в 1,12 раза больше, чем в 1996 г.
Коэффициенты опережения принято рассчитывать в сравнительном анализе нескольких рядов динамики. При параллельном изучении нескольких рядов динамики обычно их приводят к одному основанию путем расчета базисных темпов роста с одинаковой по времени базой сравнения для всех рядов. Это позволяет наглядно видеть, для какого ряда интенсивность изменения уровней наибольшая. Сравнивая далее наибольшие темпы роста с наименьшими, определяют коэффициенты опережения в развитии одного явления по отношению к другому (табл. 9.6).
Динамика доходов предприятия за 1-е полугодие 2004 г.(тыс. руб.)
У нашего движка для создания калькуляторов онлайн появилась новая функциональность — возможность вводить для расчета произвольное число значений, иными словами, появилась входная таблица. Пользователь добавляет/редактирует/удаляет значения, калькулятор их подсчитывает.
Воспользовавшись этим, я немедленно создал калькулятор для расчета аналитических показателей статистических рядов динамики. Тем более, что пользователь с ником Светлана очень давно просил калькулятор вычисляющий средний темп роста. Наконец-то это стало возможным. Но обо всем по порядку.
Начнем с теории.
Рядами динамики называются ряды расположенных в хронологическом порядке показателей, характеризующих изменение какой-либо величины во времени. Ряды динамики включают два основных элемента: показатели времени — t и соответствующие им показатели величины — Y.
Ряды динамики делятся на моментные и интервальные. Моментные ряды динамики отображают состояние изучаемой величины на определенные момент времени. Интервальные ряды отображают состояние изучаемой величины за отдельные интервалы времени.
Приведу пример. Допустим, 1 января хлеб стоит 13 рублей, 1 февраля — 14 рублей, 1 марта — 15 рублей, это моментный ряд. Если за январь мы купили 10 буханок хлеба, за февраль — 12 буханок, за март — 14 буханок, это интервальный ряд. Заметим, что интервальный ряд обладает свойством суммарности, т. е. показатели можно складывать, и получится что-то осмысленное, например, потребление хлеба за три месяца.
Имея ряд показателей, можно просчитать всевозможные аналитические производные показатели. Производные показатели могут рассчитываться двумя основными способами — цепным и базисным.
При цепном методе каждый последующий показатель сопоставляется с предыдущим, при базисном — с одним и тем же показателем, принятым за базу сравнения. Обычно это первый показатель ряда.
Рассмотрим некоторые аналитические производные показатели:
Аналитические производные показатели
1.Абсолютный прирост Разность значений двух показателей ряда динамики.
Базисный абсолютный прирост — разность текущего значения и значения принятого за постоянную базу сравнения
Цепной абсолютный прирост — разность текущего и предыдущего значений
2.Темп роста Отношение двух уровней ряда (может выражаться в процентах).
Базисный темп роста — отношение текущего значения и значения принятого за постоянную базу сравнения
Цепной темп роста — отношение текущего и предыдущего значений
3.Темп прироста Отношение абсолютного прироста к сравниваемому показателю.
Базисный темп прироста — отношение абсолютного базисного прироста и значения принятого за постоянную базу сравнения
Цепной темп прироста — отношение абсолютного цепного прироста и предыдущего значения показателя
4.Ускорение
Абсолютное ускорение — разница между абсолютным приростом за данный период и абсолютным приростом за предыдущий период равной длительности. Измеряется только цепным способом
Относительное ускорение — отношение цепного темпа прироста за данный период и цепного темпа прироста за предыдущий период
5.Темп наращивания Отношение цепных абсолютных приростов к уровню, принятому за постоянную базу сравнения
6.Абсолютное значение одного процента прироста Отношение абсолютного прироста к темпу прироста, выраженное в процентах. После раскрытия формула упрощается до
Для получения обобщающих характеристик динамики изучаемого ряда рассчитываются средние показатели динамики.
Средние показатели динамики
1.Средний уровень Характеризует типичную величину показателей
В интервальном динамическом ряду рассчитывается как простое арифметическое среднее
В моментном динамическом ряду с равными промежутками времени между отсчетами как хронологическое среднее
2.Средний абсолютный прирост Обобщающий показатель скорости абсолютного изменения значений динамического ряда
3.Средний темп роста Обобщающий характеристика темпов роста ряда динамики
(корень степени i — 1)
4.Средний темп прироста Отношение тоже что и между темпом роста и темпом прироста
Все производные и средние показатели, приведенные здесь, рассчитываются в калькуляторе (см. ниже) по мере того, как пользователь вводит значения ряда в таблицу.
На своей личной странице зарегистрированные пользователи могут сохранить калькулятор и запомнить введенные в него значения для повторного использования.