Бактериальное выщелачивание
БАКТЕРИАЛЬНОЕ ВЫЩЕЛАЧИВАНИЕ металлов (а. bacterial lixiviation, bacterial leaching; н. bakterielle Auslaugung; ф. lessivation bacterienne, lessivage bacterien; и. lixiviacion bacteriana) — извлечение химических элементов из руд, концентратов и горных пород с помощью бактерий или их метаболитов. Большая часть совмещается с выщелачиванием слабыми растворами серной кислоты бактериального и химического происхождения, а также растворами, содержащими органические кислоты, белки, пептиды, полисахариды и т.д.
Выщелачивание металлов из руд известно с давних времён. В 1566 в Венгрии осуществляли полный цикл выщелачивания с использованием системы орошения, в Германии выщелачивание меди из отвалов практиковалось с 16 века. В 1725 в Испании на руднике Рио-Тинто выщелачивали медные руды. Это были первые практические применения Бактериального выщелачивания, механизм которого (участие бактерий) не был известен. В 1947 американскими микробиологами выделен из рудничных вод ранее неизвестный микроорганизм Thiobacillus (Th.) ferrooxidans, который окисляет практически все сульфидные минералы, серу и ряд её восстановленных соединений, закисное железо, а также Cu + , Se 2- , Sb 3+ , U 4+ при pH 1,0-4,8 (оптимум 2,0-3,0) и t 5-35°С (оптимум 30-35°С). Число клеток этих бактерий в зоне окисления сульфидных месторождений достигает 1 млн. — 1 млрд. в 1 г руды или 1 мл воды.
Выщелачивание меди с помощью Th. ferrooxidans запатентовано в США в 1958 (С. Циммерлей и др.). В CCCP исследования начаты в конце 50-х годов. Позже было показано, что в сульфидных рудах распространены и другие бактерии, окисляющие Fe 2+ , S0 и сульфидные минералы, — Leptospirillum (L.) ferrooxidans, Thiobacillus organopatus, Thiobacillus thiooxidans, Sulfobacillus (S.) thermosulfidooxidans и др. L. ferrooxidans окисляет Fe 2+ , а при совместном присутствии с Th. thiooxidans или Th. organoparus — сульфидные минералы при pH 1,5-4,5 (оптимум 2,5-3,0) и t около 28°С S. thermosulfidooxidans окисляет Fe 2+ , S0 и сульфидные минералы при pH 1,9-3,5 и t 50°С. Ряд других термофильных бактерий окисляет Fe, S и сульфидные минералы при pH 1,4-3,0 и t 50-80°С. Процессы окисления неорганических субстратов служат для этих бактерий единственным источником энергии. Углерод для синтеза органических веществ клеток они получают из CO2, а другие элементы — из руд и растворов.
Реклама
При бактериальном выщелачивании руд цветных металлов широко используются тионовые бактерии Th. ferrooxidans, которые непосредственно окисляют сульфидные минералы, серу и железо и образуют химический окислитель Fe 3+ и растворитель — серную кислоту. Поэтому расход Н2SO4 при бактериальном выщелачивании снижается. Fe 3+ — основной окислитель при выщелачивании руд урана, ванадия, меди из вторичных сульфидов и других элементов. Наибольшая скорость бактериального выщелачивания достигается при тонком измельчении руды или концентрата (200 меш и меньше), в плотных пульпах (до 20% твёрдого), при активном перемешивании и аэрации пульпы, а также оптимальных для бактерий pH, температуре и высоком содержании клеток бактерий (10 9 -10 10 в 1 мл пульпы). При благоприятных условиях из концентратов в раствор за 1 ч переходит Cu до 0,7 г/л, Zn — 1,3, Ni — 0,2 и т.д. До 90% As извлекается из олово- и золотосодержащих концентратов за 70-80 ч. Скорость окисления сульфидных минералов в присутствии бактерий возрастает в сотни и тысячи раз, а Fe 2+ примерно в 2 • 10 5 раз по сравнению с химическим процессом. Селективность процесса бактериального выщелачивания цветных металлов определяется как кристаллохимическими особенностями сульфидов, так и их электрохимическим взаимодействием. Редкие элементы входят в кристаллические решётки сульфидных минералов или вмещающих пород и при их разрушении переходят в раствор и выщелачиваются. Следовательно, в выщелачивании редких элементов бактерии играют косвенную роль.
Бактериальное выщелачивание цветных металлов проводят из отвалов бедной руды (кучное) и из рудного тела (подземное). Технологическая схема бактериального выщелачивания приведена на рис.
Орошение руды в отвале или в рудном теле осуществляется водными растворами Н2SO4, содержащими Fe 3+ и бактерии. Раствор подаётся через скважины при подземном или путём разбрызгивания на поверхности при кучном выщелачивании. В руде в присутствии О2 и бактерий идут процессы окисления сульфидных минералов и медь переходит из нерастворимых соединений в растворимые. Раствор, содержащий медь, поступает на цементационную или другие установки (сорбция, экстракция) для извлечения меди, затем на отвал или рудное тело (схема замкнутая). Интенсификация выщелачивания достигается активизацией жизнедеятельности тионовых и других сульфидокисляющих бактерий, присутствующих в самой руде и адаптированных к конкретным условиям среды (тип руды, химический состав растворов, температура и т.д.). Для этого необходимы pH 1,5-2,5, высокий окислительно-восстановительный потенциал (Eh 600-750 мВ), благоприятный и стабильный химический состав растворов, что достигается путём их регенерации и режима аэрирования и увлажнения (орошения) руды. В отдельных случаях следует добавлять соли азота и фосфора, а также бактерии, выращенные на оборотных растворах в прудах-регенераторах. Число клеток бактерий в выщелачивающем растворе и руде должно быть не ниже 10 6 -10 7 соответственно в 1 мл или 1 г. Себестоимость 1 т меди, полученной этим способом, в 1,5-2 раза ниже, чем при обычных гидрометаллургических или пирометаллургических способах.
Бактериальное выщелачивание упорных сульфидных концентратов проводится прямоточно в серии последовательно соединённых чанов с перемешиванием и аэрацией аэрлифтом при t 30°С, pH 2,0-2,5 и концентрации клеток Th. ferrooxidans 10 10 -10 11 в 1 мл пульпы. Схема переработки сульфидных концентратов замкнутая. Оборотные растворы после частичной или полной регенерации используются в качестве питательной среды для бактерий и выщелачивающего раствора. Наиболее активными являются культуры бактерий, адаптированные к комплексу факторов (pH, тяжёлые металлы, тип концентрата и т.д.) в условиях активного процесса бактериального выщелачивания. Примеры бактериального выщелачивания в чанах: из коллективных медно-цинковых концентратов за 72-96 ч извлекаются в раствор до 90-92% Zn и Cd при извлечении Cu и Fe соответственно около 25% и 5%; из свинцовых концентратов можно полностью извлечь Cu, Zn и Cd. В растворах достигаются концентрации металлов: Cu до 50 г/л, Zn до 100 г/л и т.д. В олово- и золотосодержащих мышьяковистых концентратах арсенопирит практически полностью разрушается за 120 ч, что позволяет в одних случаях очистить концентраты от вредной примеси мышьяка, в других — при последующем цианировании извлечь до 90% золота.
В различных странах ведутся также исследования по бактериальному выщелачиванию металлов из отходов обогащения, пылей, шлаков и т.д. Разрабатываются способы бактериального выщелачивания золота, марганца, цветных металлов, а также обогащения бокситов с помощью гетеротрофных микроорганизмов (микроскопические грибы, дрожжи, бактерии). Эти микроорганизмы в качестве источника энергии и углерода используют органические вещества.
Ведущее значение при выщелачивании с помощью гетеротрофов играют процессы комплексообразования органических соединений с металлами, а также перекиси и гуминовые кислоты.
Внедрение бактериального выщелачивания, как и других гидрометаллургических способов добычи металлов, имеет большое экономические значение. Расширяются сырьевые ресурсы за счёт использования бедных и потерянных в недрах руд и т.д. Бактериальное выщелачивание обеспечивает комплексное и более полное использование минерального сырья, повышает культуру производства, не требует создания сложных горнодобывающих комплексов, благоприятно для охраны окружающей среды.
В промышленных масштабах Бактериальное выщелачивание применяется для извлечения меди из забалансовых руд в США, Перу, Испании, Португалии, Мексике, Австралии, Югославии и других странах. В ряде стран (США, Канада, ЮАР) бактерии используются для выщелачивания урана. В CCCP Бактериальное выщелачивание меди внедряется на ряде месторождений.
Источник
Реферат: Бактериальное выщелачивание металлов
Название: Бактериальное выщелачивание металлов Раздел: Рефераты по геологии Тип: реферат Добавлен 10:30:24 23 января 2011 Похожие работы Просмотров: 4430 Комментариев: 21 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать | |||||||||||||||||||||||||||||||||||||
Виды работ | III квартал 2009 г. | I–III кварталы 2009 г. | 2008–2009 гг. |
Добыча руды (взрывные работы), млн. т | 2,0 | 7,3 | 10,3 |
Экскавация пустой породы, млн. т | 1,0 | 2,9 | 4,2 |
Штабелирование руды, млн. т | 1,4 | 5,5 | 8,0 |
Общий объем руды в «первичных» кучах», подвергаемых биовыщелачиванию, млн. т (к концу периода) | 8,0 | 8,0 | 8,0 |
Производство металлосодержащих сульфидов, т (по сухой массе) | |||
Никель | 208 | 668 | 668 |
Цинк | 190 | 1444 | 1444 |
То же в расчете на «чистые» металлы, т | |||
Никель | 101 | 325 | 325 |
Цинк | 114 | 820 | 820 |
В летний период 2009 г. осуществлены мероприятия, обеспечивающие возможность расширения годового производства никеля к 2011 г. до 40, а к 2012 г. — до 50 тыс. т.
4. Перспективы извлечения золота методом кучного выщелачивания в холодных климатических регионах России
Необходимость вовлечения в переработку нетрадиционного сырья (бедные и забалансовые руды, кондиционные руды маломощных месторождений, отходы горнообогатительного производства и др.) вызвана истощением запасов богатых золотосодержащих руд. Переработка такого сырья по традиционной фабричной технологии нерентабельна, а вовлечение в промышленную эксплуатацию этих продуктов позволяет значительно увеличить сырьевую базу и добычу благородных металлов.
Наибольшее распространение в мировой практике получил метод кучного выщелачивания (КВ). Этот метод используется за рубежом в промышленной практике с начала 1970-х годов. В настоящее время метод КВ прочно вошел в промышленную практику золотодобычи США, Австралии, Канады, Мексики, Бразилии, Саудовской Аравии, Индонезии, Новой Гвинеи, Чили, Зимбабве, Ганы и др. Более 40 % мировой золотодобычи приходится на технологию КВ.
Многолетняя практика работы зарубежных предприятий КВ подтверждает их высокую технико-экономическую эффективность. По сравнению с традиционными фабричными технологиями КВ характеризуется низкими капитальными вложениями и эксплуатационными затратами, меньшим энерго- и водопотреблением, высокой производительностью труда, щадящим экосистему уровнем производства, низкой себестоимостью добычи золота и серебра, что позволяет вовлекать в отработку бедное золотосодержащее сырье с содержанием золота выше 0,5 г/т. Основными недостатками КВ по сравнению с фабричной технологией является, как правило, меньшее извлечение и сезонность работы.
Особенно актуальна в настоящее время проблема внедрения КВ в России. Из-за отсутствия государственных инвестиций в разработку новых месторождений строительство фабрик стало невозможным. Из-за низкой мировой цены на золото и увеличения цен на энергоносители большинство действующих предприятий стали убыточными, некоторые законсервированы и объявлены банкротами. Даже старательская золотодобыча многих россыпных месторождений стала нерентабельной.
Опыт внедрения за последние три года первых куч в России на месторождениях «Майское», «Чазы-Гол» (Хакасия), «Холодное», «Лопуховское», «Канавное», «Центральное» (Алданский район) /1,2,3,4/ показал высокую эффективность КВ: получено более 2 т золота.
В 1993 г. для месторождения «Майское» был разработан ОАО «Иргиредмет» технологический регламент, а институтом «Сибгипрозолото» выполнен проект КВ на 100 тыс.т. в год. В начале 1994 г. ЗАО ЗДК «Золотая звезда» был достроен рудник Майский, а в июне 1994 г. произведен запуск первой блок-секции в 50 тыс.т.
Технология КВ включала: рудоподготовку — дробление по классу -10+0 мм; укладку руды в штабель, орошение рудного штабеля раствором цианистого натрия с концентрацией 0,4-0,5 г/л и рН=10-11 при плотности орошения 150-160 л/м2 сут; сбор золотосодержащих растворов; осаждение из растворов цинковой стружкой; обработку золотоцинковых осадков кислотой; сушку и прокалку осадков; плавку осадков с флюсами и получение золота лигатурного в слитках; обезвреживание отработанных руд.
Добытая в карьере руда доставляется на дробильно-сортировочный комплекс (ДСК) автосамосвалами БелАЗ грузоподъемностью 27 тонн. Дробление руды осуществляли в две стадии в щековой дробилке СМД-186 и конусной дробилке КМД-1200. Руда перед дроблением подвергается грохочению для отделения глинистой фракции, которая в дальнейшем смешивается бульдозерами с готовым классом руды. Формирование штабеля производилось бульдозерами Т-130, а доставка руды в штабель — автосамосвалами БелАЗ грузоподъемностью 27 т. Укладка руды производилась на специально подготовленное основание. На спланированное естественное грунтовое основание с продольным уклоном 0,05 и поперечным уклоном 0,01, был уложен послойно с уплотнением каждого слоя дорожным катком слой глины толщиной 500 мм и на него уложена поливинилхлоридная пленка толщиной 0,45 мм марки «ОН», выпускаемая АООТ «Химпласт» г. Новосибирск. Соединения пленки проводили методом склеивания раствором поливинилхлоридной хлорированной смолы в ацетоне. На пленку был уложен защитный слой из отсева руды толщиной 100 мм и в нем смонтирована дренажная сеть из перфорированных труб для вывода продуктивных растворов, после чего был отсыпан слой руды высотой 6 м.
Первоначально для орошения рудного штабеля была смонтирована система капельного орошения, замененная впоследствии на прудковую систему орошения. Системы орошения с применением разбрызгивателей типа газонных или качающихся трубок также не нашли применение из-за практически постоянно дующих ветров.
В сезоне 1994 г. было переработано 108 тыс.т. руды с содержанием 4,9 г/т и было получено 278,5 кг золота. Всего за четыре сезона эксплуатации переработано более 400 тыс.т руды и получено более 1,8 т золота, при этом среднее извлечение составило 73,1 %.
Успешная эксплуатация Майского рудника позволила компании не только выжить в непростых условиях, но и продолжать наращивание производственных мощностей. В 1995 г. ОАО «Иргиредмет» выдал технологический регламент, а специалисты компании выполнили рабочий проект по производству золота методом КВ на участке Кузнецовский месторождения «Чазы-Гол» в Хакасии. Параллельно с разработкой и утверждением проекта осуществляли строительство ряда промышленных объектов и в 1997 г был проведен запуск первой блок-секции в 180 тыс.т и получено более 100 кг золота в виде слитков пробностью более 85 %. На участке запланировано перерабатывать около 500 тыс.т руды в год с содержанием 2,6-3 г/г и извлечением 75 % золота.
(25 тыс.т), «Центральное» (24 тыс.т), «Лопуховское» (100 тыс.т). Содержание в рудах колебалось от 1г/т «Лопуховское» до 8 г/г «Холодное», при этом извлечение золота составило не менее 60%.
В 1998 г ЗАО Артелью старателей «Амур» и ОАО «Иргиредмет» на месторождении «Комсомольская залежь» успешно произведен запуск технологии кучного выщелачивания в условиях вечной мерзлоты. Месторождение «Комсомольская залежь» находится на северо-западе Хабаровского края на южных отрогах Станового хребта. Было заложено 5,5 тыс. т. окомкованой руды со средним содержанием золота 35 г/т и серебра 152 г/т. За весь период выщелачивания было получено более 800 кг лигатурного сплава. В 1999 г. ЗАО АС «Амур» планирует увеличить производительность кучного выщелачивания до 25 тыс.т. руды.
Начиная с 1965 г. в ОАО «Иргиредмет» накоплен опыт по разработке технологии КВ золотосодержащего сырья (руд, рудопроявлений, отвалов, хвостов эолотоизвлекательных фабрик). Наши специалисты могут провести геологическую оценку, лабораторные и полупромышленные испытания по технологии КВ, разработают технологический регламент и проект, окажут помощь в его согласовании и осуществят руководство внедренческими работами.
В 1999-2000 гг. по разработкам ОАО «Иргиредмет» планируется запуск установок КВ на месторождениях «Синюхинском» в республике Горный Алтай, «Тас-Юрях» в Хабаровском крае, «Самсоновское» в Красноярском крае, «Бамское»в Амурской области, «Чертово корыто» в Иркутской области, «Таборное»в Якутии.
Месторождение «Тас-Юрях» и «Комсомольская залежь»расположены географически на близкой широте и в климатических условиях (минимальные зимние температуры, продолжительность сезона положительных температур, резко континентальный климат), подобных Бруверли Крик (провинция Юкон, Канада). Их промышленное освоение по технологии КВ имеет принципиально важное значение как в качестве опытно-показательного полигона для наработки опыта эксплуатации данной технологии в суровых северных условиях, в которых расположено подавляющее большинство золоторудных месторождений России, так и в качестве убедительного аргумента в пользу дальнейшего широкого вовлечения в эксплуатацию по технологии КВ подобных месторождений залицензировавшими их предприятиями.
Опыт Брувери Крик показывает, что даже в очень суровых климатических условиях (в зимние месяцы температура достигает -45 0С и ниже) возможно ведение процесса КВ круглогодично. Для чего в зимний период разработаны специальные конструктивные решения: линия капельных эммитеров погружается непосредственно в руду и до наступления зимы покрывается 4 метровым слоем руды с целью изоляции, все наружные трубопроводы изолируются, насыщенный раствор непосредственно поступает на фабрику, а обезметалленный раствор поступает сразу в систему орошения кучи. На фабрике предусмотрена система подогрева (в случае необходимости) растворов.
Широкое внедрение КВ позволит значительно поднять объем золотодобычи в России.
B различных странах ведутся также исследования по бактериальному выщелачиванию металлов из отходов обогащения, пыли, шлаков и т.д. Разрабатываются способы бактериального выщелачивания золота, марганца, цветных металлов, a также обогащения бокситов c помощью гетеротрофных микроорганизмов (микроскопические грибы, дрожжи, бактерии). Эти микроорганизмы в качестве источника энергии и углерода используют органические вещества. Ведущее значение при выщелачивании c помощью гетеротрофов играют процессы комплексообразования органических соединений c металлами, a также перекиси и гуминовые кислоты. Bнедрение бактериального выщелачивания, как и др. гидрометаллургических способов добычи металлов, имеет большое экономическое значение. Pасширяются сырьевые ресурсы за счёт использования бедных и потерянных в недрах руд и т.д. Б. в. обеспечивает комплексное и более полное использование минерального сырья, повышает культуру производства, не требует создания сложных горнодобывающих комплексов, благоприятно для охраны окружающей среды. B промышленных масштабах бактериальное выщелачивание. применяется для извлечения меди из забалансовых руд в США, Пepy, Испании, Португалии, Mексике, Aвстралии, Югославии и др. странах. B ряде стран (США, Kанада, ЮАР) бактерии используются для выщелачивания урана. В заключительных главах настоящего реферата обзорно представлены перспективы бактериального выщелачивания руд драгоценных металлов зарубежных фирм и российских предприятий.
Список использованной литературы
1. Иванов В.И., Степанов Б.А., Применение микробиологических методов в обогащении и гидрометаллургии, М., 1960;
2. Соколова Г.А., Каравайко Г.И., Физиология и геохимическая деятельность тионовых бактерий, М., 1964;VIII Международный конгресс по обогащению полезных ископаемых, Л., 1968;
3. Применение бактериального метода выщелачивания цветных металлов из забалансовых руд, М., 1968; Калабин А.И., Добыча полезных ископаемых подземным выщелачиванием, М , 1969.
4. Интернет-ресурс http://dic.academic.ru – Словари и Энциклопедии. Геологическая энциклопедия.
5. Лодейщиков В.В., д.т.н., гл. научный сотрудник, журнал «Золотодобыча», №132, Ноябрь, 2009
6. Дементьев В.Е., к.т.н., Татаринов А.П., Гудков С.С., Григорьев С.Г, Рязанова И.И. журнал «Золотодобыча», №23, Октябрь, 2000
Источник