Ацетатное волокно способ получения полимеризации

Содержание
  1. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации
  2. Содержание:
  3. Реакции полимеризации
  4. Реакции поликонденсации
  5. Характеристика полимеров
  6. Получение ацетатного волокна
  7. Химизм промышленного способа получения волокна:
  8. Новый — экологически чистый — способ получения ацетатного волокна:
  9. Здесь происходит следующая реакция под действием электрических разрядов:
  10. Далее угарный газ окисляется до оксида углерода IY ( CO 2 ) и идет на дальнейшую переработку:
  11. 4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
  12. Реакции полимеризации
  13. Полимеры, получаемые реакцией полимеризации, и исходные мономеры
  14. Мономер
  15. Получаемый из него полимер
  16. Структурная формула
  17. Варианты названия
  18. Структурная формула
  19. Варианты названия
  20. Реакции поликонденсации
  21. Материалы на основе полимеров
  22. Пластмассы
  23. Каучуки
  24. Волокна
  25. Классификация волокон по их происхождению

Высокомолекулярные соединения. Реакции полимеризации и поликонденсации

Содержание:

Высокомолекулярные соединения – это полимеры, у которых молекулярная масса больше 10000. Полимер – это соединение, состоящее из большого числа звеньев – мономеров (низкомолекулярных веществ), которые повторяются в полимерной цепи большое количество раз .

Число n показывает, из скольких мономеров состоит полимер, и называется степенью полимеризации. Молекулярная масса иногда достигает нескольких миллионов.

Высокомолекулярные соединения классифицируются по характеру мономеров:

  • гомополимеры – вещества, состоящие из одинаковых мономеров. Например, пропилен CH2=CH-CH3 – это мономер полипропилена (-CH(CH3)-CH2-)n;
  • гетерополимеры – вещества, состоящие из двух разных мономеров. Например, при взаимодействии 1,3-дивинила и стирола получается стирольный каучук.

Полимеры получают с помощью:

  • реакции полимеризации;
  • реакции поликонденсации.

Реакции полимеризации

Реакции полимеризации заключаются в объединении большого количества низкомолекулярных соединений, количество которых определяется степенью полимеризации. Общее уравнение реакции:

Самой распространенной реакций полимеризации является реакция получения полиэтилена:

реакции полимеризации вступают непредельные соединения. Это могут быть молекулы одного мономера, либо разных. В первой ситуации реакцию называют гомополимеризацией, во второй – сополимеризацией.

I. Гомополимеризация

К этим реакциям относят получение полиэтилена, полипропилена поливинилхлорида и т.д. Например, получение полипропилена из пропена под действием ультрафиолетовых лучей:

II. Сополимеризация

К этим реакциям относят получение сополимера этилена и пропилена:

Полимеры, которые получают в результате реакций полимеризации

Формула

Название

Дивинил и стирол

Полимеры (-CH2-CH(Cl)-)n Поливинилхлорид (ПВХ) (-CF2-CF2-)n Тефлон (-CH2-C(CH3)=CH-CH2-)n Изопреновый каучук (-CH2-CH=CH-CH2-CH2-CH(C6H5)-)n Бутадиенстирольный каучук

Реакции поликонденсации

Реакции поликонденсации заключаются в образовании полимера из мономеров, а также выделении побочного низкомолекулярного вещества. В этих уравнениях исходные реактивы — молекулы мономера с функциональными группами.

I. Гомополиконденсация

К данным реакциям относят получение полимера из одного мономера с выделением конденсата. Например, получение полисахарида из глюкозы – этот процесс происходит в природе.

Синтетическое волокно получают в промышленности из аминоэнантовой кислоты под воздействием температуры, давления и катализатора в виде молекулярного азота.

II. Сополиконденсация

К данным реакциям относят получение полимера из нескольких мономеров с выделением конденсата. Например, получение фенолформальдегидной смолы из фенола и формальдегида в щелочной или подкисленной среде.

С помощью реакций сополиконденсации в промышленности получают полиэфиры, полиамины, полиакрил и т.д.

Характеристика полимеров

Полимеры – это соединения, которые имеют особые свойства и множество классификаций.

По способу получения высокомолекулярные вещества делятся на:

  1. природные (целлюлоза, крахмал, белки);
  2. искусственные (эфиры целлюлозы);
  3. синтетические (капрон, полиэтилен, тефлон).

Также по форме макромолекул:

  1. линейные (волокна, полиэтилен низкого давления);
  2. разветвленные (крахмал, полиэтилен высокого давления);
  3. пространственные (резина, кварц).

А еще по свойствам и применению:

Все полимеры активно используются в отраслях жизнедеятельности человека.

Пластик (пластические массы) – полезные материалы, которые способны под воздействием температур или давления плавиться и при застывании оставлять заданную форму. Этот процесс сопровождается переходом из вязкотекучего в стеклообразное состояние. Главный компонент пластмассы – полимер, а остальные части – это наполнители, пластификаторы, красители и т.д.

Читайте также:  Способы физического подсчета имущества

Эластомеры – это высокомолекулярные соединения, которые обладают высокоэластичными свойствами. Каучуки используют для изготовления автомобильных шин, промышленных товаров и медицинских препаратов. Натуральный каучук получают из латекса (млечный сок каучуконосных растений). Получают по методу С.В. Лебедева с помощью полимеризации дивинила при действии металлического натрия.

Волокна – это высокомолекулярные соединения, для которых характерна строгая упорядоченность молекул и используется в изготовлении нитей. Существует три типа волокон, которые разделяются еще на несколько подтипов.

  1. Натуральные.
    • Искусственного происхождения.
    • Животного происхождения.
    • Минерального происхождения.

  2. Искусственные.
    • Ацетатное волокно.
    • Вискозное волокно.

  3. Синтетические.
    • Полиамидное волокно.
    • Полиэфирное волокно.

Полимеры – это соединения, с помощью которых человечество способно изготавливать высокопрочные материалы и довольствоваться благами технологий.

Источник

Получение ацетатного волокна

Ацетатные волокна получили широкое распространение в быту. Многие покупают в магазинах красивые и легкие синтетические ткани и одежду. Но не многие задумывались о цене, которую они платят за ношение вещей из ацетатного волокна. Действительно, всем хорошо известны свойства ацетатного (искусственного) шелка: прочность, легкость, дешевизна и красота.

Но есть и еще одно качество — ядовитость. Дело здесь не в самом ацетатном волокне, а в способе его получения.

В промышленности нити данного волокна получают из твердого, малоактивного вещества, получаемого из природной древесины — целлюлозы. Это химически довольно сложный процесс. Общую целлюлозу сначала превращают в триацетилцеллюлозу путем химической реакции с уксусным альдегидом. А затем обрабатывают дихлорэтаном в присутствии этилового спирта. В результате этой реакции твердые шарики триацетилцеллюлозы размягчаются и получившуюся массу пропускают тонкие отверстия в металлической пластине при небольшом нагревании и давлении. На получившиеся очень тонкие нити действуют воздушным потоком и при этом испаряется этилдихлорэтановый эфир. И мягкие нити застывают вновь становясь твердыми и прочными.

Химизм промышленного способа получения волокна:

1) Структурный вид молекулы целлюлозы

2) Получение этилдихлорэтанового эфира

3) Получение мягкой массы, состоящей из отдельных молекул тринитроацетилцеллюлозы, обработанной спиртом в присутствии дихлорэтана

Все, казалось бы, просто и совершенно чисто. Но тот, кто так рассуждает, к сожалению, ошибается.

Оказывается, эфир с нитей волокна испаряется не полностью, частично оседая. И все бы ничего, да в формуле этилдихлорэтанового эфира присутствует молекула хлора. Причем, слабосвязанная с молекулами самого волокна. Одевая одежду из ацетатного волокна, ваша кожа неминуемо соприкаснется с тканью и активный хлор моментально вступит в реакцию с кожей. Частично прореагировав, он попадет в кровь и соединится с ионами металлов, там присутствующих, и в таком виде, уже навсегда, останется в организме. И пусть доля его поступления в кровь незначительна, но ведь за долгое время может накопиться смертельная доза этого активнейшего химического элемента.

На первый взгляд, все кажется просто, необходимо заменить способ производства ацетатных тканей. Но вот в этом и вся суть.

Дело в том, что для того, чтобы размягчить триацетилцеллюлозу, невозможно использовать температуру и различного рода растворители, так как это химически малоактивное вещество, да еще к тому же мгновенно разрушающееся уже при 300oC.

Многократными экспериментами был найден один единственный путь — это сначала радикально расщепить молекулы вещества, а затем соединить их в виде длинной полимерной цепочки, насчитывающей около миллиона звеньев. Такой процесс могут произвести только лишь химически очень активные элементы, такие как Cl, N, I и др.

Далее будет предложен новый подход к задаче путем применения химически активного, но безвредного газа озона (O3).

Новый — экологически чистый — способ получения ацетатного волокна:

  1. Распределение электронных плотностей в молекуле тринитроацетилцеллюлозы
  2. При действии озоном на молекулу, от нее отрывается водород и происходит смещение электронных плотностей

Данная молекула станет нейтральной только в том случае, если от нее сначала отнять два электрона, а затем добавить один.

Этого можно достичь путем как бы распятия данной молекулы на мелкой металлической сетке, по которой циркулирует постоянный электрический ток. Эта цель достигается в главной установке для получения волокна

Необходимый для работы главной установки озон, получается в озонаторе:

Здесь происходит следующая реакция под действием электрических разрядов:

Но, так как озон в реакциях непосредственно не участвует, а участвует атомарный кислород, который очень легко получается из озона, то необходимо устройство, которое улавливало бы реакционноспособный атомарный кислород. Такое устройство называется электроразделитель.

Точно по такому же принципу, лишь с небольшими конструктивными отличиями, работает другая установка, служащая для получения катионов водорода из молекулярного водорода.

Для получения водорода используется электропечь. При действии водяного пара природный газ, а точнее метан (CH4), расщепляется на угарный газ (СО) и чистый водород Н2.

Далее угарный газ окисляется до оксида углерода IY ( CO 2 ) и идет на дальнейшую переработку:

  1. Способ — это рассеивание в малых пропорциях на большом участке леса в несколько сот гектар
  2. Присоединение к данному производству еще одного в котором либо необходим угарный газ, либо необходим углекислый газ (естественно еще одно производство должно быть переоборудовано на безотходное)

И последняя установка — это конденсатор, где происходит образование чистейшей воды из гидроксильной группы OH-, образовавшейся в главной установке, и катиона H+.

Источник

4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.

Высокомолекулярными соединениями (ВМС) называют соединения с молекулярной массой более 10000.

Практически все высокомолекулярные вещества являются полимерами.

Полимеры — это вещества, молекулы которых состоят из огромного числа повторяющихся структурных звеньев, соединенных между собой химическими связями.

Полимеры могут быть получены с помощью реакций, которые можно разделить на два основных типа: это реакции полимеризации и реакции поликонденсации.

Реакции полимеризации

Реакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера).

Количество молекул мономера ( n ), объединяющихся в одну молекулу полимера, называют степенью полимеризации.

В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией, а если различны — сополимеризацией.

Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена:

Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола:

Полимеры, получаемые реакцией полимеризации, и исходные мономеры

Мономер

Получаемый из него полимер

Структурная формула

Варианты названия

Структурная формула

Варианты названия

этилен, этен полиэтилен пропилен, пропен полипропилен стирол, винилбензол полистирол, поливинилбензол винилхлорид, хлористый винил, хлорэтилен, хлорэтен поливинилхлорид (ПВХ) тетрафторэтилен (перфторэтилен) тефлон, политетрафторэтилен изопрен (2-метилбутадиен-1,3) изопреновый каучук (натуральный) бутадиен-1,3 (дивинил) бутадиеновый каучук, полибутадиен-1,3

хлоропреновый каучук

бутадиенстирольный каучук

Реакции поликонденсации

Реакции поликонденсации — это реакции образования полимеров из мономеров, в ходе которых, помимо полимера, побочно образуется также низкомолекулярное вещество (чаще всего вода).

В реакции поликонденсации вступают соединения, в состав молекул которых входят какие-либо функциональные группы. При этом реакции поликонденсации по тому, один используется мономер или больше, аналогично реакциям полимеризации делятся на реакции гомополиконденсации и сополиконденсации.

К реакциям гомополиконденсации относятся:

* образование (в природе) молекул полисахарида (крахмала, целлюлозы) из молекул глюкозы:

* реакция образования капрона из ε-аминокапроновой кислоты:

К реакциям сополиконденсации относятся:

* реакция образования фенолформальдегидной смолы:

* реакция образования лавсана (полиэфирного волокна):

Материалы на основе полимеров

Пластмассы

Пластмассы — материалы на основе полимеров, которые способны под действием нагревания и давления формоваться и сохранять заданную форму после охлаждения.

Помимо высокомолекулярного вещества в состав пластмасс входят также и другие вещества, однако основным компонентом все же является полимер. Благодаря своим свойствам он связывает все компоненты в единую целую массу, в связи с чем его называют связующим.

Пластмассы в зависимости от их отношения к нагреванию делят на термопластичные полимеры (термопласты) и реактопласты.

Термопласты — вид пластмасс, способных многократно плавиться при нагревании и застывать при охлаждении, благодаря чему возможно многоразовое изменение их изначальной формы.

Реактопласты — пластмассы, молекулы которых при нагревании «сшиваются» в единую трехмерную сетчатую структуру, после чего изменить их форму уже нельзя.

Так, например, термопластами являются пластмассы на основе полиэтилена, полипропилена, поливинилхлорида (ПВХ) и т.д.

Реактопластами, в частности, являются пластмассы на основе фенолформальдегидных смол.

Каучуки

Каучуки — высокоэлластичные полимеры, углеродный скелет которых можно представить следующим образом:

Как мы видим, в молекулах каучуков имеются двойные C=C связи, т.е. каучуки являются непредельными соединениями.

Каучуки получают полимеризацией сопряженных диенов, т.е. соединений, у которых две двойные C=C связи, разделены друг от друга одной одинарной С-С связью.

Так например, особо зарекомендовавшими себя мономерами для получения каучуков являются:

В общем виде (с демонстрацией только углеродного скелета) полимеризация таких соединений с образованием каучуков может быть выражена схемой:

Таким образом, исходя из представленной схемы, уравнение полимеризации изопрена будет выглядеть следующим образом:

Весьма интересным является тот факт, что впервые с каучуком познакомились не самые продвинутые в плане прогресса страны, а племена индейцев, у которых промышленность и научно-технический прогресс отсутствовали как таковые. Естественно, индейцы не получали каучук искусственным путем, а пользовались тем, что давала им природа: в местности, где они проживали (Южная Америка), произрастало дерево гевея, сок которого содержит до 40-50% изопренового каучука. По этой причине изопреновый каучук называют также натуральным, однако он может быть получен и синтетическим путем.

Все остальные виды каучука (хлоропреновый, бутадиеновый) в природе не встречаются, поэтому всех их можно охарактеризовать как синтетические.

Однако каучук, не смотря на свои преимущества, имеет и ряд недостатков. Так, например, из-за того что каучук состоит из длинных, химически не связанных между собой молекул, его свойства делают его пригодным для использования только в узком интервале температур. На жаре каучук становится липким, даже немного текучим и неприятно пахнет, а при низких температурах подвержен затвердеванию и растрескиванию.

Технические характеристики каучука могут быть существенно улучшены его вулканизацией. Вулканизацией каучука называют процесс его нагревания с серой, в результате которого отдельные, изначально не связанные друг с другом, молекулы каучука «сшиваются» друг с другом цепочками из атомов серы (полисульфидными «мостиками»). Схему превращения каучуков в резину на примере синтетического бутадиенового каучука можно продемонстрировать следующим образом:

Волокна

Волокнами называют материалы на основе полимеров линейного строения, пригодные для изготовления нитей, жгутов, текстильных материалов.

Классификация волокон по их происхождению

Искусственные волокна (вискозу, ацетатное волокно) получают химической обработкой уже существующих природных волокон (хлопка и льна).

Синтетические волокна получаются преимущественно реакциями поликонденсации (лавсан, капрон, нейлон).

Источник

Читайте также:  Способ посадки помидор по методу шадрина
Оцените статью
Разные способы