Асинхронная передача данных способ передачи с задержкой по времени или без задержки по времени

Асинхронный способ передачи данных

Связанные понятия

В телекоммуникации и информатике под последовательной передачей данных понимают процесс передачи данных по одному биту за один промежуток времени, последовательно один за одним по одному коммуникационному каналу или компьютерной шине, в отличие от параллельной передачи данных, при которой несколько бит пересылаются одновременно по линии связи из нескольких параллельных каналов. Последовательная передача всегда используется при связи на дальние расстояния и в большинстве компьютерных сетей, так как.

В области телекоммуникаций и информатике параллельным соединением называют метод передачи нескольких сигналов с данными одновременно по нескольким параллельным каналам. Это принципиально отличается от последовательного соединения; это различие относится к одной из основных характеристик коммуникационного соединения.

Не следует путать с Композитным видеоКомпонентное видео — способ раздельной передачи цветного видео по двум и более каналам (кабелям), при котором отдельные составляющие видеосигнала несут разную информацию о цветном изображении.

Не следует путать с Компонентным видеоКомпози́тное ви́део — полный цветной аналоговый видеосигнал в исходной полосе видеочастот, передаваемый без звукового сопровождения по одному каналу (кабелю). По ГОСТ 21879—88 понятию англ. Composite Video Signal соответствует полный видеосигнал, содержащий сигнал синхронизации. В аналоговом цветном телевидении стандартной чёткости композитным видеосигналом называют полный цветной телевизионный сигнал (ПЦТС) стандартов PAL, SECAM или NTSC.

Источник

Синхронная и асинхронная передача данных: терминология и отличия

Сегодня будем с вами разбираться, что такое синхронная и асинхронная передача данных в программировании и как они реализуются в разных языках.

Сложность современных компьютерных программ связана с длительными процессами, которые происходят «внутри». Бывают такие процессы, обработка которых требует много времени. И если в процессе обработки такого процесса программа будет «стоять», то это чревато снижением продуктивности и вероятным и убыткам и . Для этого и придумано асинхронное программировани е , чтобы улучшить общую эффективность программы путем отмены блокирования основного потока программы.

Асинхронная передача данных — это современная популярная тенденция в разработке. Многие нынешние инструменты по программированию имеют собственные инструменты для реализации асинхронных задач. Никто не любит просто ждать, поэтому всегда нужно тщательно определять, когда налаживать синхронное, а когда — асинхронное взаимодействие программы.

Синхронное представление в быту

У нас есть некая занятая девушка, которая запланировала на вечер познакомить родителей со своим молодым человеком. Чтобы все прошло идеально, ей нужно:

доделать дела на работе;

подготовить вечерний наряд;

сделать прическу, маникюр и накрасит ь ся;

попросить маму накрыть на стол.

Без законченных дел на работе, подготовки вечернего наряда, приукрашивания себя самой и накрытого стола знакомство с родителями точно не состоится! Девушка живет в таком мире, что , пока не доделана одна работа, она не м ожет приступить к следующей.

Девушка берет телефон в руки и начинает звонить. Набрала маму и попросила на вечер накрыть стол. Мама принялась готовить. Девушка з аказала красивое вечернее платье и согласовала адрес его доставки. Съездила сделала себе маникюр и прическу. Наступил вечер, знакомство не состоялось. Почему? Девушка была так занята подготовкой, что не успела доделать дела на работе, потому что целый день провела с телефоном , отдавая команды и ожидая подтверждения, что все готово.

Если бы девушка жила в асинхронном мире, то знакомство с родителями не зависело бы от накрытого стола или выглаженного платья. Отдав команды по телефону на выполнение необходимых задач, ей не пришлось бы постоянно перезванивать и спрашивать, все ли готово . Она бы спокойно выполняла свою основную работу, а все остальные просто отзвонились бы , как только ее команда была бы выполнена. И тогда знакомство бы состоялось.

Читайте также:  Собственниками не реализован способ управления

Асинхронная передача данных в программировании

При синхронном программировании каждая функция, передающая данные , прежде чем приступить к своему выполнению , ожидает окончани я выполнения предыдущей. Если одна из функций выполняется очень долго, то программа может просто «зависнуть».

Асинхронная передача данных — это когда долго выполняемую функцию убирают из основного потока выполнения программы. Она не завершается, а продолжает работать в каком-нибудь другом месте. А сама программа не «зависает» и не «тормозит», а продолжает свое выполнение.

Рассмотрим на реальном примере, как происходит асинхронная передача данных. Допустим , у нас есть некий ресурс с фильмами. Пользователь заходит на ресурс. В фильтре указывает параметры для подбора какого-нибудь фильма и нажимает кнопку для старта фильтра. Ресурс отправит соответствующий запрос для поиска подходящих фильмов. В целом такая обработка запроса на сервере может происходить довольно долго. Если ресурс будет работать синхронно, то его страница «зависнет» , пока не будет обработан запрос, соответственно , никак нельзя будет взаимодействовать со страницей, даже просто прокрутить ее вниз. Если ресурс будет работать асинхронно, тогда пользователь не замети т «подвисания» и сможет взаимодействовать со страницей , пока ресурс не выдаст ему результаты запроса.

То есть при работе ресурса с фильмами выполнение главного потока программы разделится на 2 части: одна будет поддерживать взаимодействие со страницей, а вторая будет отправлять запрос и ожидать ответа от сервера. Таких асинхронных задач в программе может быть несколько. Для большого их количества придумали даже специальную очередь, которая работает по принципу : кто первый пришел, тот первый ушел.

Терминология асинхронности

Когда организуется асинхронная передача данных, то неизбежно будут всплывать близкие к этому процессу термины . Все они связаны с асинхронным выполнением, но обозначают разные его варианты:

Конкурентность. Данны й термин оз начает, что происходит одновременное выполнение нескольких задач. Эти задачи могут быть вообще не связаны друг с другом, поэтому не будет иметь значени я, какая из них завершит выполнение раньше, а какая — позже. Каждая такая задача формирует отдельный поток выполнения.

Параллелизм. Данный термин подразумевает выполнение одной задачи несколькими потоками. То есть фактически происходит разделение одной задачи на несколько небольших частей. Все это делается для того, чтобы ускорить общее выполнение большой з а дачи.

Многопоточность. Данный термин обозначает наличие нескольких потоков выполнения программы.

Асинхронность. Данный термин означает, что начало и конец одной функции мо гут происходить в разных частях кода. Чтобы такая функция завершилась , должно пройти немного времени, но сколько точно — сказать невозможно.

Заключение

Синхронная и асинхронная передача данных может осуществляться во многих сферах. Мы показали на примере программирования, как работают синхронные и асинхронные события. У обоих подходов есть свои достоинства и недостатки, поэтому использовать их в своих программах нужно обдуманно.

Нельзя утверждать, что асинхронная передача данных — это единственно правильный подход. Это совсем не так, потому что синхронный подход тоже до сих пор очень популярен и часто используется.

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Источник

Расскажите пожалуйста про синхронный, асинхронный и изохронный режимы передачи данных.

При синхронной последовательной передаче каждый передаваемый бит данных сопровождается импульсом синхронизации, информирующим приемник о наличии на линии информационного бита. Следовательно, между передатчиком и приемником должны быть протянуты минимум три провода: два для передачи импульсов синхронизации и бит данных, а также общий заземленный проводник. Если же передатчик (например, микроЭВМ) и приемник (например, дисплей) разнесены на несколько метров, то каждый из сигналов (информационный и синхронизирующий) придется посылать либо по экранированному (телевизионному) кабелю, либо с помощью витой пары проводов, один из которых заземлен или передает сигнал, инверсный основному.

Читайте также:  Бабушкин способ вязания лицевой петли

Синхронная последовательная передача начинается с пересылки в приемник одного или двух символов синхронизации (не путать с импульсами синхронизации) . Получив такой символ (символы) , приемник начинает прием данных и их преобразование в параллельный формат. Естественно, что при такой организации синхронной последовательной передачи она целесообразна лишь для пересылки массивов слов, а не отдельных символов. Это обстоятельство, а также необходимость использования для обмена сравнительно дорогих (четырехпроводных или кабельных) линий связи помешало широкому распространению синхронной последовательности передачи данных.

Асинхронная последовательная передача данных означает, что у передатчика и приемника нет общего генератора синхроимпульсов и что синхронизирующий сигнал не посылается вместе с данными. Как же в таком случае приемник будет узнавать о моментах начала и завершения передачи бит данных. Опишем простую процедуру, которую можно использовать, если передатчик и приемник асинхронной последовательной передачи данных согласованы по формату и скорости передачи.

Стандартный формат асинхронной последовательной передачи данных, используемый в ЭВМ и ВУ, содержит n пересылаемых бит информации (при пересылке символов n равно 7 или 8 битам) и 3-4 дополнительных бита: стартовый бит, бит контроля четности (или нечетности) и 1 или 2 стоповых бита (рис. 3.3,а) . Бит четности (или нечетности) может отсутствовать. Когда передатчик бездействует (данные не посылаются на линию) , на линии сохраняется уровень сигнала, соответствующий логической 1.

Источник

Немного об оптимизации задержки передачи данных

Низкая задержка — важный фактор, обеспечивающий надежную работу и высокую производительность сетей. Приложения для общения в реальном времени, стриминга и проведения транзакций сильно зависят от времени ожидания. Увеличение задержки всего на несколько миллисекунд может привести к искажению изображения и голосов, «зависанию» приложений и финансовым потерям.

Провайдеры стараются следить за пропускной способностью сети и колебанием задержек, но увеличение «ширины» канала часто не влияет на задержку в работе сети. В этом материале мы рассмотрим основные причины задержки и способы борьбы с ней.

Задержка и ее влияние на качество связи

В сетях, основанных на пакетном обмене, связь между задержкой и пропускной способностью неоднозначна и сложна в определении. При этом время ожидания складывается из следующих компонентов:

  • Задержка сериализации – время, необходимое порту для передачи пакета
  • Задержка распространения – время, требуемое биту информации для достижения приёмника (обусловливается законами физики)
  • Задержка при перегрузке – время, которое кадр проводит в выходной очереди элемента сети
  • Задержка передачи – время, которое сетевой элемент тратит на анализ, обработку и передачу пакета

Управление трафиком

Специалисты компании Ashton, Metzler & Associates определяют термин «управление трафиком» как возможность сети обрабатывать разные виды трафика с разным приоритетом.

Этот подход используется в сетях с ограниченной пропускной способностью при работе важных приложений, чувствительных к задержкам. Управление может означать ограничение трафика для конкретных сервисов, например, электронной почты, и выделение части канала под работу критически важных бизнес-приложений.

Для управления трафиком и качеством связи в сети организации инженеры рекомендуют:

  • Настроить сеть так, чтобы можно было проводить мониторинг и классификацию трафика
  • Анализировать трафик в сети для понимания закономерностей работы важных приложений
  • Внедрить подходящее разделение на уровни доступа
  • Вести наблюдение и отчетность, чтобы активно управлять изменяющимися схемами распределения трафика

Наиболее эффективный способ управления трафиком, по мнению специалистов Viavi Solutions, — иерархический контроль качества связи (H-QoS), являющийся комбинацией сетевых политик, фильтрации и управления пропускной способностью трафика. H-QoS не будет снижать скорость работы, если все элементы сети обеспечат ультранизкую задержку и высокую производительность. Главное достоинство H-QoS — сокращение времени ожидания без необходимости увеличения пропускной способности канала.

Читайте также:  Способ изготовления изделий или

Использование NID

Устройства сетевого интерфейса (NID) дают возможность проводить мониторинг и оптимизацию трафика при небольших затратах. Обычно такие устройства устанавливаются на территории абонента: сетевых вышках и прочих точках перехода между сетями операторов.

NID обеспечивают контроль за всеми компонентами сети. Если такое устройство поддерживает H-QoS, то провайдер может не только следить за работой сети, но и проводить индивидуальную настройку параметров для каждого подключенного пользователя.

Кэширование

Относительно небольшое увеличение пропускного канала само по себе не решит проблему низкой производительности сетевых приложений. Кэширование помогает ускорить доставку контента и оптимизировать нагрузку на сеть. Этот процесс можно рассматривать как технику ускорения хранилища ресурсов — сеть работает быстрее, будто после обновления.

Обычно в организациях кэширование используется на нескольких уровнях. Стоит отметить так называемое прокси-кэширование. Когда пользователь запрашивает какие-либо данные, его запрос может быть выполнен локальным прокси-кэшем. Чем выше вероятность исполнения такого запроса, тем сильнее освобождается сетевой канал.

Прокси-кэши являются своего рода общей кэш-памятью: работают с большим числом пользователей и очень хороши в сокращении времени ожидания и сетевого трафика. Одним из полезных вариантов применения прокси-кэширования является возможность удаленного подключения нескольких сотрудников к набору интерактивных веб-приложений.

Сжатие данных

Основная задача сжатия данных — сократить размер файлов, которые передаются по сети. В некоторой степени сжатие похоже на кэширование и может дать эффект ускорения, как при увеличении пропускной способности канала. Один из самых распространённых методов сжатия — алгоритм Лемпеля – Зива – Велча, который используется, например, в ZIP-архивировании и утилите сжатия UNIX.

Однако в некоторых ситуациях компрессия данных может привести к проблемам. Например, сжатие плохо масштабируется в плане использования ресурсов оперативной памяти и процессора. Также компрессия редко приносит пользу, если трафик зашифрован. При использовании большинства алгоритмов шифрования на выходе получаются мало повторяющиеся последовательности, поэтому такие данные не могут быть сжаты стандартными алгоритмами.

Для эффективной работы сетевых приложений необходимо решать проблемы с пропускной способностью и задержкой одновременно. Сжатие данных направлено на разрешение только первой проблемы, поэтому так важно применять её в связке с методиками управления трафиком.

Одностороннее сжатие данных

Существует альтернативный подход к сжатию данных — это системы оптимизации веб-контента, размещенные на одной стороне канала передачи данных. Такие системы используют технологии оптимизации веб-страниц, различные стандарты сжатия, методы оптимизации изображений, дельта-кодирование и кэширование. Они позволяют добиться сжатия информации в 2–8 раз в зависимости от содержимого.

У этих инструментов есть некоторые преимущества перед двусторонними решениями и прокси-кэшированием. Они значительно дешевле в установке и управлении, чем двусторонние. Кроме того, такие системы могут определять скорость соединения, тип браузера, оптимизировать не только статический, но и динамический контент для конкретного пользователя.

К недостатку одностороннего сжатия относится то, что с его помощью оптимизировать можно только работу отдельно взятых программ и сайтов.

Сегодня инженеры постоянно проводят исследования, стараясь повысить производительность и эффективность сетей. Группа IEEE 802.1Qau разрабатывает улучшенные методы управления, которые позволят устранить потерю пакетов при перегрузке портов, команда Internet Engineering Task Force создает протокол для канального уровня связи, способный обеспечить кратчайшее соединение с помощью Ethernet.

Также ведутся работы над улучшением выборки данных для передачи, чтобы распределять неиспользуемые части соединения для различных классов трафика.

Поддержание высокого качества соединения в сетях — важная задача для современных организаций. Это позволяет предоставлять клиентам лучшие сервисы и использовать ресурсы сети по максимуму.

Если вам интересна тема оптимизации процессов передачи, хранения и обработки данных, то можете обратить внимание на несколько других материалов из нашего блога:

Источник

Оцените статью
Разные способы