Асимптоты способы их нахождения

Асимптоты графика функции

Часто задание на нахождение асимптот функции встречается в курсе математического анализа, в частности при решении задач на тему исследования функции. Для того, чтобы успешно ответить на вопрос: как найти асимптоты функции? необходимо уметь вычислять пределы, понимать что они собой представляют, знать основные методы решения пределов. Если всё это вы умеете на должном уровне, тогда найти асимптоты для вас не будет проблемой. Итак, что такое асимптота? Асимптота это линия, к которой бесконечно приближается ветвь графика функции. Чтобы было наглядно, посмотрите на изображения представленные ниже.

Обратите внимание, что соприкосновения между асимптотой и графиками нет, и не должно быть. Асимптота бесконечно приближается к графику функции. Давайте рассмотрим какие виды асимптоты функции бывают и как их находить, но о последнем будет рассказано далее.

Из таблицы узнаем, что асимптоты у функции бывают трех видов: вертикальные, горизонтальные, наклонные. Каждую найти асимптоту функции нужно по своему. Для этого нужны лимиты. Сколько бывает асимптот всего у функции? Ответ: ни одной, одна, две, три. и бесконечно много. У каждой функции по разному.

Вертикальные асимптоты

Чтобы найти данный вид асимптот необходимо найти область определения заданной функции и отметить точки разрыва. В этих точках предел функции будет равен бесконечности, а это значит, что функция в этой точке бесконечно приближается к линии асимптоты.

Горизонтальные асимптоты

Необходимо устремить аргумент лимита функции к бесконечности. Если предел существует и равен числу, то горизонтальная асимптота будет найдена и равна $ y=y_0 $ как показано во втором столбце таблицы

Наклонные асимптоты

Наклонная асимптота представляется в виде $ y = kx+b $. Где $ k $ — это коэффициент наклона асимптоты. Сначала находится коэффициент $ k $, затем $ b $. Если какой либо из них равен $ \infty $, тогда наклонной асимптоты нет. А если $ b = 0 $, то получаем горизонтальную асимптоту. Так что для экономии времени лучше сразу находить наклонную асимптоту, а горизонтальная проявится сама собой в случае её существования.

Примеры решений

Для начала решения найдем вертикальные асимптоты, но прежде найдем область определения функции $ f(x) $. По определению знаменатель не должен быть равен нулю. Поэтому имеем, $ 3x+2 \neq 0; 3x \neq -2; x \neq -\frac<2> <3>$. Получили точку разрыва $ x = -\frac<2> <3>$. Вычислим в ней предел функции и убедимся окончательно, что вертикальная асимптота это $ x = -\frac<2> <3>$.

Теперь найдем горизонтальные асимптоты, но прежде рассчитаем коэффициенты $ k $ и $ b $.

Так как $ k = 0 $, то мы уже понимаем то, что наклонных асимптот нет, а есть горизонтальные. Найдем теперь коэффициент $ b $.

Подставляем найденные коэффициенты в формулу $ y = kx + b $, получаем, что $ y = \frac<5> <3>$ — горизонтальная асимптота.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Найти все асимптоты графика функции $$ f(x) = \frac<5x> <3x+2>$$
Решение
Ответ
$$ y = \frac<5> <3>$$

Найдем область определения данного примера, чтобы определить вертикальные асимптоты. $ 1-x \neq 0; x \neq 1; $. Точка разрыва $ x = 1 $, а это значит что это и есть вертикальная асимптота. Найдем для доказательства предположения предел в этой точке. $$ \lim\limits_ \frac<1> <1-x>= \frac<1> <0>= \infty $$

Приступим к поиску наклонных асимптот.

Итого, $ y=0 $ — горизонтальная асимптота.

Пример 2
Найти все асимптоты графика функции $ f(x) = \frac<1> <1-x>$
Решение
Ответ
$$ y=0 $$

Замечаем, что знаменатель не обращается в ноль при любом значении икса. А это значит, что нет точек разрыва и следовательно нет вертикальных асимптот. Остается найти горизонтальные асимптоты.

Так как $ k $ конечное число, не равное $ 0 $ или бесконечности, то существует наклонная асимптота. Вычислим недостающее число $ b $.

$ y =\frac<1><3>x $ — наклонная асимптота к функции с углом наклона одна третья.

Пример 3
Найти все асимптоты графика функции $ f(x) = \frac <3x^2+5>$
Решение
Ответ
$$ y =\frac<1><3>x $$

Нет точек разрыва, а это значит, нет вертикальных асимптот.

$ y = 0 $ — горизонтальная асимптота

Пример 4
Найти асимптоты $ f(x) = xe^ <-x>$
Решение
Ответ
$$ y = 0 $$

Если в задачах даются элементарные функции, то заранее известно сколько и есть ли асимптоты. Например, у параболы, кубической параболы, синусоиды вообще нет никаких. У графиков функций таких как логарифмическая или экспоненциальная есть по одной. А у функций тангенса и котангенса бесчисленное множество асимптот, но арктангенс и арккатангенс имеет по две штуки.

Во всех приведенных примерах пределы вычислялись с помощью правило Лопиталя, которое очень ускоряет процесс вычисления и создает меньше ошибок.

Источник

Асимптоты графика функции

Виды асимптот

Прямая $x=x_<0>$ называется вертикальной асимптотой графика функции $y=f(x)$, если хотя бы одно из предельных значений $\lim _-0> f(x)$ или $\lim _+0> f(x)$ равно $+\infty$ или $-\infty$ .

Замечание. Прямая $x=x_<0>$ не может быть вертикальной асимптотой, если функция непрерывна в точке $x=x_<0>$ . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Прямая $y=y_<0>$ называется горизонтальной асимптотой графика функции $y=f(x)$, если хотя бы одно из предельных значений $\lim _ f(x)$ или $\lim _ f(x)$ равно $y_<0>$ .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Прямая $y=k x+b$ называется наклонной асимптотой графика функции $y=f(x)$, если $\lim _[f(x)-k x-b]=0$

Нахождение наклонной асимптоты

(условиях существования наклонной асимптоты)

Если для функции $y=f(x)$ существуют пределы $\lim _ \frac=k$ и $\lim _[f(x)-k x]=b$, то функция имеет наклонную асимптоту $y=k x+b$ при $x \rightarrow \infty$ .

Горизонтальная асимптота является частным случаем наклонной при $k=0$ .

Если при нахождении горизонтальной асимптоты получается, что $\lim _ f(x)=\infty$, то функция может иметь наклонную асимптоту.

Кривая $y=f(x)$ может пересекать свою асимптоту, причем неоднократно.

Задание. Найти асимптоты графика функции $y(x)=\frac-3 x+2>$

Решение. Область определения функции:

$D[f] : x \in(-\infty ;-1) \cup(-1 ;+\infty)$

а) вертикальные асимптоты: прямая $x=-1$ — вертикальная асимптота, так как

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты $y=k x+b$:

Таким образом, наклонная асимптота: $y=x-4$ .

Ответ. Вертикальная асимптота — прямая $x=-1$ .

Источник

Асимптоты

п.1. Понятие асимптоты

Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:


Вертикальная асимптота x=3

Горизонтальная асимптота y=1

Наклонная асимптота y=x

п.2. Вертикальная асимптота

Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).

Например:
Исследуем непрерывность функции \(y=\frac<1><(x-1)(x+3)>\)
ОДЗ: \(x\ne \left\<-3;1\right\>\)
\(\left\\notin D\) — точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем \(x_0=-3\). Найдем односторонние пределы: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-3-0-1)(-3-0+3)>=\frac<1><-4\cdot(-0)>=+\infty\\ \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-3+0-1)(-3+0+3)>=\frac<1><-4\cdot(+0)>=-\infty \end Односторонние пределы не равны и бесконечны.
Точка \(x_0=-3\) — точка разрыва 2-го рода.
Исследуем \(x_1=1\). Найдем односторонние пределы: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(1-0-1)(1-0+3)>=\frac<1><-0\cdot 4>=-\infty\\ \lim_\frac<1><(x-1)(x+3)>=\frac<1><(1+0-1)(1+0+3)>=\frac<1><+0\cdot 4>=+\infty \end Односторонние пределы не равны и бесконечны.
Точка \(x_1=1\) — точка разрыва 2-го рода.
Вывод: у функции \(y=\frac<1><(x-1)(x+3)>\) две точки разрыва 2-го рода \(\left\\), соответственно – две вертикальные асимптоты с уравнениями \(x=-3\) и \(x=1\).

п.3. Горизонтальная асимптота

Число горизонтальных асимптот не может быть больше двух.

Например:
Исследуем наличие горизонтальных асимптот у функции \(y=\frac<1><(x-1)(x+3)>\)
Ищем предел функции на минус бесконечности: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-\infty)(-\infty)>=+0 \end На минус бесконечности функция имеет конечный предел \(b=0\) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(+\infty)(+\infty)>=+0 \end На плюс бесконечности функция имеет тот же конечный предел \(b=0\) и также стремится к нему сверху.
Вывод: у функции \(y=\frac<1><(x-1)(x+3)>\) одна горизонтальная асимптота \(y=0\). На плюс и минус бесконечности функция стремится к асимптоте сверху.

Итоговый график асимптотического поведения функции \(y=\frac<1><(x-1)(x+3)>\):

п.4. Наклонная асимптота

Число наклонных асимптот не может быть больше двух.

Чтобы построить график асимптотического поведения, заметим, что у функции \(y=\frac\), очевидно, есть вертикальная асимптота x=1. При этом: \begin \lim_\frac=-\infty,\ \ \lim_\frac=+\infty \end

График асимптотического поведения функции \(y=\frac\):

п.5. Алгоритм исследования асимптотического поведения функции

На входе: функция \(y=f(x)\)
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.

п.6. Примеры

Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) \( y=\frac<4x> \)
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: \(x=\pm 1\)
Односторонние пределы в точке \(x=-1\) \begin \lim_\frac<4x><(x+1)(x-1)>=\frac<4(-1-0)><(-1-0+1)(-1-0-1)>=\frac<-4><-0\cdot(-2)>=-\infty\\ \lim_\frac<4x><(x+1)(x-1)>=\frac<4(-1+0)><(-1+0+1)(-1+0-1)>=\frac<-4><+0\cdot(-2)>=+\infty \end Точка \(x=-1\) — точка разрыва 2-го рода
Односторонние пределы в точке \(x=1\) \begin \lim_\frac<4x><(x+1)(x-1)>=\frac<4(1-0)><(1-0+1)(1-0-1)>=\frac<4><2\cdot(-0)>=-\infty\\ \lim_\frac<4x><(x+1)(x-1)>=\frac<4(1+0)><(1+0+1)(1+0-1)>=\frac<4><2\cdot(+0)>=+\infty \end Точка \(x=1\) — точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты \(x=\pm 1\)

График асимптотического поведения функции \(y=\frac<4x>\)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: \begin b_1=\lim_e^<\frac<1>>=e^0=1\\ b_2=\lim_e^<\frac<1>>=e^0=1\\ b=b_1=b_2=1 \end Функция имеет одну горизонтальную асимптоту \(y=1\). Функция стремится к этой асимптоте на минус и плюс бесконечности.

График асимптотического поведения функции \(y=e^<\frac<1>>\)

в) \( y=\frac \)
Заметим, что \( \frac=\frac<(x+1)(x-1)>=\frac<(x^2)(x+1)><(x+1)(x-1)>=\frac \) $$ y=\frac\Leftrightarrow \begin y=\frac\\ x\ne -1 \end $$ График исходной функции совпадает с графиком функции \(y=\frac\), из которого необходимо выколоть точку c абсциссой \(x=-1\).

3) Наклонные асимптоты
Ищем угловые коэффициенты: \begin k_1=\lim_\frac=\left[\frac<\infty><\infty>\right]=\lim_\frac\right)>=\frac<1+0><1-0>=1\\ k_2=\lim_\frac=\left[\frac<\infty><\infty>\right]=\lim_\frac\right)>=\frac<1+0><1-0>=1\\ k=k_1=k_2=1 \end У функции есть одна наклонная асимптота с \(k=1\).
Ищем свободный член: \begin b=\lim_(y-kx)= \lim_\left(\frac-2\right)= \lim_\frac= \lim_\frac=\left[\frac<\infty><\infty>\right]=\\ =\lim_\frac=\frac<1+0><1-0>=1 \end Функция имеет одну наклонную асимптоту \(y=x+1\).
График асимптотического поведения функции \(y=\frac\)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: \begin b_1=\lim_xe^<\frac<1><2-x>>=-\infty\cdot e^0=-\infty\\ b_2=\lim_xe^<\frac<1><2-x>>=+\infty\cdot e^0=+\infty \end Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

График асимптотического поведения функции \(y=xe^<\frac<1><2-x>>\)

Источник

Читайте также:  Способы защиты объектов экономики от землетрясения
Оцените статью
Разные способы