Анализ это способ решения задачи

Аналитический подход в решении математических задач.
статья на тему

В статье описаны основные этапы решения текстовых задач в курсе математики 5 — 6 классов.

Скачать:

Вложение Размер
analiticheskiy_podhod_v_reshenii_matematicheskih_zadach.docx 19.25 КБ

Предварительный просмотр:

Камалутдинова Светлана Михайловна,

учитель математики МОУ СОШ с углублённым изучением отдельных предметов № 1 города Малмыжа.

Аналитический подход в решении математических задач

Умение решать задачи – один из основных показателей математического развития ученика, глубины усвоения им учебного материала. Любой экзамен, любая проверка знаний содержит в качестве основной и, пожалуй, наиболее важной части, решение задач.

Как показывает моя практика подготовки к итоговой аттестации, многие учащиеся даже не приступают к решению задач, пропуская их.

Психологические исследования данной проблемы показывают, что причина несформированности умений и способностей в решении задач состоит в том, что школьники не получают необходимых знаний о сущности задач и их решений и поэтому решают задачи, не осознавая свою деятельность. Ребята не стараются понять, в чём состоят приёмы и методы решения задач, стараются как можно быстрее решить задачу, решают их лишь ради получения ответа, не вникая в процесс решения.

Значит для того, чтобы научить детей решать задачи, надо научить их разбираться в том, что они собой представляют, как устроены, из каких частей состоят, каковы инструменты, с помощью которых производится их решение.

И если мы сумеем научить школьников не просто получать правильный ответ при решении задач, а анализировать задачу, проникать в её сущность, обучим приёмам поиска решений, различным методам решения, то в дальнейшем они не будут испытывать трудностей при решении не только математических, но и любых, в том числе жизненных задач.

Особое внимание уделяю обучению решению текстовых задач. Ещё в начальной школе дети обучаются решению таких задач, поэтому перед тем как взять 5 класс, я консультируюсь с учителем об умениях каждого ученика решать текстовые задачи, изучаю методику работы учителя над задачей, посещаю уроки математики.

В 5 классе обращаю внимание на работу с каждым этапом решения текстовых задач. Выделяют следующие этапы решения задачи:

  • Анализ содержания задачи;
  • Схематическая запись;
  • Поиск способа решения задачи;
  • Осуществление решения задачи;
  • Проверка решения задачи;
  • Исследование задачи;
  • Формулировка ответа задачи;
  • Анализ решения задачи;

При этом все 8 этапов можно не выделять, достаточно рассмотреть 5 основных этапов (подчёркнуты). Но я при работе с задачей уделяю существенное внимание и схематической записи, так как считаю это существенным звеном при решении задач.

Этап анализа содержания задачи, на мой взгляд, является одним из наиболее важных этапов решения задачи. Основная цель на данном этапе : выявить все имеющиеся связи между данными и искомыми величинами. Очень важно на данном этапе понять содержание задачи. При этом помогают вопросы:

  1. О чём говорится в задаче?
  2. Каков тип задачи?
  3. Информация о решении такой задачи.
  4. Все ли понятия и термины вам знакомы?
  5. Каким числом может выражаться ответ задачи?

Данная работа должна быть постоянной для того, чтобы ребёнок, при самостоятельном решении текстовых задач, автоматически отвечал на эти вопросы.

Результаты предварительного анализа нужно фиксировать. Я учу это делать на втором этапе решения задач в виде схематической записи. Использую разные виды схематической записи:

Считаю, что удачно выполненная схематическая запись условия – это залог успешного решения задачи. Кроме того, схематическая запись даёт возможность ликвидировать у большей части учащихся страх перед текстовой задачей и правильно выбрать способ решения.

Цель этапа поиска решения задачи: выбрать метод решения задачи и составить план решения. Вопросы, помогающие составить план решения задачи:

  1. Решали ли вы аналогичную задачу? Если такая задача была решена, то план составить не трудно.
  2. Известна ли вам задача, к которой можно свести решаемую? Чтобы ответить на этот вопрос, часто приходится прибегать к совету: переформулировать условие задачи.

Если же ученики затрудняются ответить на эти вопросы, то приходится искать другие способы решения. Многие ученики решение задачи начинают с вопроса: Что мы можем найти, исходя из имеющихся данных? При решении арифметических задач это не создаёт больших проблем, но в дальнейшем приводит к избыточному решению геометрических задач. Поэтому я приучаю своих учеников решать задачи, начиная с вопроса, по следующему алгоритму:

  1. Что нужно найти в задаче?
  2. Какие величины для этого нужно знать?
  3. Знаем ли мы эти величины?
  4. Можем ли мы найти неизвестные величины?
  5. Что для этого нужно сделать?

Анализ задачи по данному алгоритму мы проводим как в виде таблицы, так и виде схемы.

Большое внимание при решении задач уделяю поиску разных способов решения задачи, по возможности стараюсь разобрать все способы, предложенные учениками. Это помогает каждому ученику выбрать оптимальный путь решения задачи.

Кроме арифметического и алгебраического способов решения текстовых задач знакомлю ребят с ещё одним методом – методом перебора. Знание этого метода поможет ребятам со слабой математической подготовкой, особенно при решении текстовых задач ГИА. Кроме того, данный метод находит применение и при решении более сложных задач.

Как правило, у учеников большие затруднения возникают при решении задач на смеси, сплавы, растворы. Знание разных способов решения таких задач помогает выбрать оптимальный способ для каждого ученика. В основном мы решаем такие задачи алгебраическим способом. Я знакомлю своих ребят и с арифметическим способом решения (Представлен в презентации).

Учить осмысленному подходу к решению текстовых задач мне помогает учебник математики под редакцией Г. В. Дорофеева, в котором выделены такие типы задач, как задачи на части и задачи на уравнивание. В 7 классе умение решать такие задачи позволяет более осмысленно подходить к решению уравнений и позволяет решать геометрические задачи арифметическим способом. Также в этом учебнике рассматриваются задачи на совместную работу, даётся алгоритм решения таких задач.

Такая системная, целенаправленная работа над текстовыми задачами приводит к тому, что ученики приучаются анализировать любое математическое задание и более осмысленно подходить к его выполнению, что пригодится ребятам при выполнении заданий ГИА и ЕГЭ.

Источник

Доклад на тему: «СИСТЕМА РАБОТЫ НАД ТЕКСТОВОЙ АРИФМЕТИЧЕСКОЙ ЗАДАЧЕЙ В НАЧАЛЬНОЙ ШКОЛЕ. Виды анализа задачи».

Система работы над задачей- значима для учащихся начальных классов.Как правильно анализировать данные задачи и вести разбор? Какие пути решения должны четко представлять учащиеся., алгоритм рассуждения при решении задачи и помощь в построении данного алгоритма.

Содержимое разработки

«СИСТЕМА РАБОТЫ НАД ТЕКСТОВОЙ АРИФМЕТИЧЕСКОЙ ЗАДАЧЕЙ

В НАЧАЛЬНОЙ ШКОЛЕ. Виды анализа задачи».

«Ребёнок не должен получать готовых знаний, должен напрягать свой ум и волю, должен чувствовать себя соавтором в решении возникающих проблем». (В. В. Давыдов)

1 Теоретические аспекты опыта

Обучение детей самостоятельному анализу решения простых и составных задач волнует каждого учителя. Ключ к решению задачи — это прежде всего пошаговый анализ действий, которые необходимо выполнить для того, чтобы ответить на главный вопрос задачи.

Во время анализа устанавливается зависимость между данными и искомыми значениями величин.

Основные традиционные приёмы анализа задачи – это разбор от вопроса к числовым данным (анализ) и от числовых данных к вопросу ( синтез). Анализ – логический прием, состоящий в расчленении исследуемого объекта на составные элементы и исследовании каждого из них в отдельности. Он может использоваться многократно. Разбор задачи от вопроса к данным — это суждение, которое состоит в том, чтобы подобрать два числовых значения одной или разных величин таким образом, чтобы дать ответ на вопрос задачи. Одно из значений или оба могут быть неизвестными. Для их нахождения подбираются два других, и так продолжается процесс подбора, пока не приходим к известным числовым значениям величин. В результате такого разбора учащиеся устанавливают зависимость между числовыми значениями величин, расчленяют ее на простые задачи и составляют план ее решения

При аналитическом способе решения задачи выясняется, что нужно предварительно узнать, чтобы ответить на вопрос задачи. Чтобы помочь детям вести рассуждения аналитическим способом, можно использовать прием, называемый “деревом рассуждений”. Суть его состоит в том, что по ходу рассуждений строится схема, которая помогает увидеть, какие простые задачи следует выделить и каким будет план решения данной составной задачи.

Синтез – логическая операция установления связи между составными частями исследуемого объекта и изучения его как единого целого. Исследуемый объект называется в требовании задачи, а его элементы описываются в условии. Разбор задачи от числовых данных состоит в том, что к двум числовым данным подбирается вопрос, затем к следующим двум данным, одно из которых может быть результатом первого действия, подбирается следующий вопрос. И этот процесс продолжается, пока не будет получен ответ на вопрос задачи

Синтетический способ характеризуется тем, что основным вопросом при поиске решения задачи является вопрос о том, что можно найти по двум или нескольким известным в тексте задачи числовым значениям. По вновь полученным числовым значениям и другим известным в задаче данным вновь ищется ответ на вопрос, что можно узнать по этим значениям. И так до ответа на вопрос составной задачи. Иными словами, суть этого способа состоит в вычленении простой задачи из предложенной составной и решении ее.

Аналитико-синтетический метод. Значительно чаще, используется на практике, чем аналитический и синтетический методы. Он сочетает элементы и анализа и синтеза. Так при решении сложной задачи она с помощью синтеза разбивается на ряд более простых задач, а затем при помощи синтеза происходит соединение решений этих задач в единое целое. Обучение учащихся начальных классов рассмотренным методам поиска решения задач сводится к обучению их правильному формулированию вопросов, соответствующих аналитическому или синтетическому методу. При разборе задачи нового вида учитель должен в каждом отдельном случае поставить детям вопросы так, чтобы навести их на правильный или осознанный выбор арифметических действий.

2. Обратимся к практике.

Анализ задачи аналитическим способом. Будем идти от вопроса к данным.

ЗАДАЧА.
Лида нарисовала 4 домика, а Вова на 3 домика больше. Сколько домиков нарисовали дети ?

Составляем дерево рассуждения с пояснением:

Чтобы ответить на вопрос задачи необходимо знать 2 величины: сколько домиков нарисовала Лида и сколько нарисовал Вова. Сколько нарисовала Лида нам известно-4, а сколько нарисовал Вова неизвестно, но сказано что на 3 домика больше, вспомню на 3 больше значит столько же и еще з, поэтому к 4 прибавлю 3 , теперь зная величину сколько прочитал Вова и сколько прочитала Лида я отвечу на вопрос задачи.

АНАЛИЗ ЗАДАЧИ СИНТЕТИЧЕСКИМ СПОСОБОМ .

Начинаем от числовых данных.

В двух пачках 160 тетрадей, причем в одной из них на 20 тетрадей больше, чем в другой.

Сколько тетрадей в каждой пачке?

I ?

II ? 20т.

Составляем дерево рассуждения, сопровождая пояснением:

В задаче нам известны 2 величины : 160-сколько тетрадей в двух пачках и 20 на столько во второй больше, зная эти величины, найду третью: сколько тетрадей в двух пачках, если количество их равное, для этого 160 – 20, теперь мне известна величина сколько тетрадей в пачках при их равном количестве и величина 2 – сколько пачек тетрадей , разделим эти величины и узнаем сколько тетрадей в одной пачке при равном количестве тетрадей. Мы ответили лишь на один вопрос задачи : сколько тетрадей в одной пачке, чтобы узнать количество тетрадей во второй пачке прибавим 20 т.к. сказано,что во второй пачке на 20 тетрадей больше.

Таким образом, рассуждение можно строить двумя способами:

от вопроса задачи к числовым данным;

от числовых данных идти к вопросу;

Нужно помнить, что введение понятия «СОСТАВНАЯ ЗАДАЧА» вводится тогда, когда научились решать все виды простых задач.

Разбор составной задачи заканчивается составлением дерева рассуждения –

это объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку арифметических действий.

Нужно обратить внимание и на то, что полный анализ задачи, решаемой в 4-5 действий , является многословным, забирает много времени. Здесь целесообразно использовать схему неполного анализа , при котором в условие задачи записываются не только числа, но и выражения, это

во-первых укорачивает условие задачи, а во-вторых,делает более прозрачный путь к её решению.

Птицефабрика должна отправить в магазины 6000 яиц. Она уже отправила 10 ящиков по 350 яиц и 4 ящика по 150 яиц. Сколько яиц осталось отправить в магазины?

Отправили – (350 х10) яиц

(150 х 4) яиц 6000 яиц

При этом рассуждаем: если было 10 ящиков по 350 яиц в каждом, то яиц было 350 × 10. Отправила также 4 ящика по 150 яиц, это составляет (150×4) яиц.

Выполняя анализ от вопроса, учащиеся рассуждают примерно так:

«Чтобы ответить на вопрос задачи, надо знать две величины : сколько всего яиц надо отправить (6 000 яиц) и сколько яиц птицефабрика уже отправила. Чтобы узнать, сколько яиц фабрика отправила, надо знать, сколько она отправила в первый и во второй раз. В первом вопросе узнаем, сколько птицефабрика отправила яиц в 10 ящиках, во втором – сколько она отправила яиц в 4 ящиках, в третьем – сколько она отправила всего яиц и в четвертом – сколько яиц осталось отправить».

Схемы полного (рис.1) и неполного (рис.2) анализа наглядно показывают преимущество и недостатки каждого из них.

После анализа учащиеся самостоятельно записывают решение в форме математического выражения или по отдельным действиям. Для учащихся, которые затрудняются , ведется более подробный анализ.

Такая работа, которая проводится в системе, способствует развитию учебной мотивации, большинству детей помогает видеть взаимосвязь между величинами, овладевать разными способами решения задач, т.е. способствует формированию математической компетентности.

Исследовательская деятельность помогает разнообразить деятельность детей на уроке, поддерживает интерес к математике и, главное, помогает им овладеть умением решать задачи. Конечно, подобный вид работы, требует больших затрат времени. Однако время, потраченное на них, окупается умением решать задачи не только на уровне государственных стандартов, но и нестандартные задачи. А самое главное у детей появляется желание решать задачи.

Вспомним старую притчу о том, как один мудрец бедняков накормил.

— Пришёл мудрец к бедным и сказал: «Я вижу, вы голодны. Давайте я дам вам рыбу, чтобы вы утолили голод». Но время прошло, и люди опять проголодались.

Притча гласит: «Не надо давать рыбу, следует научить ловить её»

Не надо давать готовый путь к решению, надо побуждать учащихся к действию, учить их анализировать, рассуждать и находить путь решения самостоятельно.

Аргинская И.И., Дмитриева Н.Я.Обучаем по системе Л.В. Занкова: 2кл.: Кн. Для учителя. – М.: Просвещение, 1993. – 160с.

Занков Л.В. Беседы с учителями. (Вопросы обучения в начальных классах.) М., Просвещение, 1970. — 200с.

Иванов Д.А., Митрофанов К. Г., Соколова О.В. Компетентностный подход в образовании. Проблемы, понятия, инструментарий. М.: изд-во Академии повышения квалификации и проф. переподготовки работников образования.- 2006г.

Лысенкова. С. Н.. Когда легко учиться: из опыта работы учителя начальных классов школы №587 Москвы.- 2-е изд.М.: Педагогика, 1985 – 176с.(пед. поиск: опыт, проблемы, находки)

Мамыкина М. Ю. Работа над задачей в системе Л. В. Занкова. Начальная школа

Матвеева Н.А.. Различные арифметические способы решения задач. Начальная школа №3.2001г.

Математика. 1-4 классы: обучение решению текстовых задач/ авт.-сост. И.Л. Кустова. – Волгоград: Учитель, 2009. – 103с.

Новиков А.Учебный процесс в логике исторических типов организационной культуры. Народное образование №1, 2008г.с.163

Петерсон Л.Г., Кубышева М.А., Мазурина С.Е., Зайцева И.В. Что значит «уметь учиться». – М.: АПК и ППРО, УМЦ «Школа 2000…», 2008. – 80с.

Узорова, Нефёдова. 500 задач с пояснением, пошаговым решением и правильным оформлением. 1класс. АСТ.: Астрель. Москва.2004г.

Фадеева. Схемы записи задач. Начальная школа №4.2003г.

Фонин С.Н.. Моделирование, как важное средство обучения решению задач. Начальная школа. №3.1990г.

Шульга Р.П. Решение задач разными способами – средство повышения интереса к математике. Начальная школа №12. 1990г.

Ф.Семья. Совершенствование работы над составными задачами. Начальная школа №5.1991г.

Источник

Читайте также:  Корейская маска enjoy mini wash off pack способ применения
Оцените статью
Разные способы