Аналитический способ решения параметров

Аналитический способ решения задач с параметром.
материал для подготовки к егэ (гиа) по алгебре (10, 11 класс)

Данный материал предназначен для обучающихся 10-11 классов и содержит задания для подготовки к ЕГЭ по теме «Задание №18. Решение задач с параметром». Он направлен на совершенствование умений решать задачи с параметром аналитическим способом на примере решения систем уравнений с параметром.

Скачать:

Вложение Размер
parametr2.ppt 952 КБ

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

По теме: методические разработки, презентации и конспекты

Рассматриваются различные способы решения задач с параметром: алгебраический, графический, с пмощью производной, методом симметрии и т. д.

Внеклассная работа. Подготовка к экзамену. Проведена в форме «Математических чтений» (идея кадетского корпуса). Занятие проводится в форме обмена знаниями между учащимися. Кадеты заранее получают тему.

Одними из наиболее сложных задач для учащихся в курсе математики — это задачи с параметрами, так как требуют от них умения рассуждать логически и анализировать полученные решения. С одной сторон.

На любых испытаниях и во время учебного процесса наибольшуюсложность вызывают задачи с параметрами. Это объясняется двумя основными причинами. Во-первых, этой теме очень мало времени уделяется ш.

В презентации рассмотрены различные решения уравнений, неравенств, задач с параметром графическим способом. Материал можно использовать на элективном курсе в 9-11 классах по алгебре.

исследуюся графический, аналитический методы и метод мажорант.

Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, ч.

Источник

«Методы решения задач с параметрами»

МКОУ «Лодейнопольская средняя общеобразовательная школа № 68»

Выступление на заседании МО

Методы решения задач

Прокушева Наталья Геннадьевна

г. Лодейное Поле

Задачи с параметрами

Задачи с параметрами относятся к наиболее сложным из задач, предлагающихся как на Едином государственном экзамене, так и на дополнительных конкурсных экзаменах в ВУЗы.

Они играют важную роль в формировании логического мышления и математической культуры. Затруднения, возникающие при их решении связаны с тем, что каждая задача с параметрами представляет собой целый класс обычных задач, для каждой из которых должно быть получено решение.

Если в уравнении (неравенстве) некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение (неравенство) параметрическим.

Как правило, неизвестные обозначаются последними буквами латинского алфавита: x , y , z , …, а параметры – первыми: a , b , c , …

Решить уравнение (неравенство) с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они. Два уравнения (неравенства), содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения (неравенства) является решением второго и наоборот.

Естественно, такой небольшой класс задач многим не позволяет усвоить главное: параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, – степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня четной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.

Как начинать решать такие задачи? Не надо бояться задач с параметрами. Прежде всего, надо сделать то, что делается при решении любого уравнения или неравенства- привести заданное уравнение ( неравенство) к более простому виду, если это возможно: разложить рациональное выражение на множители, разложить тригонометрический многочлен на множители, избавиться от модулей, логарифмов, и т.д.. затем необходимо внимательно еще и еще прочитать задание.

При решении задач, содержащих параметр, встречаются задачи, которые условно можно разделить на два большие класса. В первый класс можно отнести задачи, в которых надо решить неравенство или уравнение при всех возможных значениях параметра. Ко второму классу отнесем задания, в которых надо найти не все возможные решения, а лишь те из них, которые удовлетворяют некоторым дополнительным условиям.

Наиболее понятный для школьников способ решения таких задач состоит в том, что сначала находят все решения, а затем отбирают те, которые удовлетворяют дополнительным условиям. Но это удается не всегда. Встречаются большое количество задач, в которых найти все множество решений невозможно, да нас об этом и не просят. Поэтому приходится искать способ решить поставленную задачу, не имея в распоряжении всего множества решений данного уравнения или неравенства, например, поискать свойства входящих в уравнение функций, которые позволят судить о существовании некоторого множества решений.

Основные типы задач с параметрами

Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.

Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.

Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров).

Обращаем внимание на то, что при решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Однако не стоит абсолютизировать сказанное, так как иногда прямое решение в соответствии с типом 1 является единственным разумным путем получения ответа при решении задачи типа 2.

Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.

Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых:

1) уравнение выполняется для любого значения переменной из заданного промежутка;
2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.

Комментарий. Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.

Наиболее массовый класс задач с параметром — задачи с одной неизвестной и одним параметром. Следующий пункт указывает основные способы решения задач именно этого класса.

Основные методы решения задач с параметром

Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.

Комментарий. По мнению авторов, аналитический способ решения задач с параметром есть самый трудный способ, требующий высокой грамотности и наибольших усилий по овладению им.

Способ II (графический). В зависимости от задачи (с переменной x и параметром a) рассматриваются графики или в координатной плоскости (x; y), или в координатной плоскости (x; a).

Комментарий. Исключительная наглядность и красота графического способа решения задач с параметром настолько увлекает изучающих тему «Задачи с параметром», что они начинают игнорировать другие способы решения, забывая общеизвестный факт: для любого класса задач их авторы могут сформулировать такую, которая блестяще решается данным способом и с колоссальными трудностями остальными способами. Поэтому на начальной стадии изучения опасно начинать с графических приемов решения задач с параметром.

Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.

Перейдем теперь к демонстрации указанных способов решения задач с параметром.

1. Линейные уравнения и неравенства с параметрами

Линейная функция: – уравнение прямой с угловым коэффициентом . Угловой коэффициент равен тангенсу угла наклона прямой к положительному направлению оси .

Линейные уравнения с параметрами вида

Если , уравнение имеет единственное решение.

Если , то уравнение не имеет решений, когда , и уравнение имеет бесконечно много решений, когда .

Источник

Аналитические методы решения задач с параметрами

АНАЛИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ С ПАРАМЕТРАМИ

Проблема исследования — Традиционно задачи с параметром включаются в варианты письменных экзаменов в вузы, централизованного тестирования и Единого государственного экзамен, поэтому мною выбрана актуальная тема «Аналитические методы решения задач с параметрами».

Цель работы – систематизировать методы решения задач с параметрами, сводящихся к исследованию квадратного.

В ходе исследования решались следующие задачи –

разработать блок схемы, отображающие всевозможные варианты, возникающие при решении квадратных уравнений с параметрами.

систематизировать наиболее часто встречаемые задачи с параметрами, выделить классы задач, решаемых по единой схеме, выработать приёмы для их решения

Методика – В процессе работы изучалась, обобщалась и анализировалась теория научных работ известных математиков, таких как Г.А. Ястребинского, С.А Шестакова, Е.В Юрченко и других.

Результаты – Разработанные блок – схемы помогут учащимся решать задачи с параметрами, которые включаются в варианты предлагаемого Единого государственного экзамена, а также при подготовке к вступительным экзаменам по математике в вузы.

Аналитические методы решения задач с параметрами

Знаки корней квадратного уравнения…..………… …………..…………..…. 6

Задачи с параметрами являются наиболее трудным разделом в школьном курсе математики. Трудности решения такого рода задач вызваны прежде всего тем, что в любом случае, даже при решении простейших уравнений и неравенств ,содержащих параметры ,приходится производить ветвление всех значений параметров на отдельные классы, при каждом из которых задача имеет решение. При этом необходимо чётко следить за сохранением равносильности решаемых уравнений и неравенств с учётом области определения выражений, входящих в уравнение или неравенство.

Основной целью исследовательской работы была систематизация (в форме блок-схем)наиболее часто встречающихся и наиболее типичных задач с параметром, связанных с исследованием квадратного трехчлена. Используя блок-схемы, выполнено решение ряда заданий из сборника задач лицея ТРТУ.

Традиционно задачи с параметрами включаются в варианты письменных экзаменов в вузы, централизованного тестирования и Единого государственного экзамена.

Аналитические методы решения задач с параметрами

Определение 1 . Уравнение вида ax 2 + bx + c , где a , b , c Є R , a ≠0 , называется квадратным уравнением относительно переменной x .

Ситуации, возникающие при решении квадратных уравнений, отразим в блок-схеме I .

корня

два различных корня

Пример 1 . При каких значениях параметра c уравнение ( c -2) x 2 +2( c -2)+2=0 не имеет корней?

Решение: Рассмотрим два случая:

2) если с-2=0, с=2, то заданное уравнение примет вид 0 x 2 +0 x +2=0, 2=0, т.е.

уравнение не имеет корней.

Пример 2 . При каких значениях параметра a уравнение

(a 2 -6 a +8) x 2 +( a 2 -4) x +10-3 a — a 2 =0 имеет более двух корней?

Решение: Так как квадратное не может иметь более двух корней, а линейное может иметь бесконечно много корней, то в силу схему VI имеем

10-3a-a 2 =0 a=-5, a=2, a=2.

Пример 3 . При каких значениях параметра m уравнение

Решение: Уравнение mx 2 -( m +1) x +2 m -1=0 имеет два различных действительных корня, если D>0, m≠0.

( m +1) 2 -4(2 m -1) m >0 m 2 +2 m +1-8 m 2 +4 m >0

Знаки корней квадратного уравнения .

Всевозможные комбинации знаков корней квадратного уравнения отразим в блок-схеме II.

Корни разных знаков

Корни одного знака

Пример 1. При каких значениях параметра с уравнение

(с-1)x 2 +( c +4) x + c +7=0 имеет отрицательные корни?

Решение: Рассмотрим два случая (линейный и квадратичный):

1)если с-1=0, с=1, то уравнение примет вид 5х+8=0, х=-5/8-отрицательный корень;

2)если с-1≠0, с≠1, то следуя схеме II, получим систему:

с

1

-22/3 2 с

с

-4 1 с

-22/3≤с c ≤2 . Объединяя результаты обоих случаев, получим:

Пример 2. При каких значениях а уравнение (а-1)х 2 +2(2а+1)х+4а+3=0 имеет корни одного знака?

Рашение: Рассмотрим два случая:

1)если а-1=0, а=1, то уравнение примет вид 6х=-7, х=-7/6-один корень.

2)если а-1≠0, а≠1, то следуя схеме II:

Ответ:

Определение. Функция вида y = ax 2 + bx + c , где а≠0 , называется квадратичной. График квадратичной функции называется параболой. Абсциссы точек пересечения параболы y = ax 2 + bx + c с осью (ОХ) являются корнями уравнения ax 2 + bx + c =0 .

Отразим взаимное расположение параболы и оси (ОХ) в блок-схеме III.

Пересекает ось (ОХ)

Касается оси (ОХ)

Не пе ресекает ось (ОХ)

Лежат выше оси (ОХ)

Лежат ниже оси (ОХ)

Пример 1. При каких значениях параметра а вершина параболы

Решение: Пусть 0 ; у 0 )- координаты вершины параболы. В силу замечания имеем х 0 =7а, у 0 2 -10 +3а. Так как вершина параболы лежит в третьей четверти, то

-5 a

Пример 2. При каких значениях параметра b график функции лежит ниже оси (ОХ) ?

Решение: Рассмотрим два случая:

1)Если b =2 , то прямая у=8х-1 не лежит ниже оси (ОХ).

2)Если . b =-2 , то прямая у=-1 лежит ниже оси (ОХ) .

2.Пусть 4-b 2 ≠0 , тогда в соответствии со схемой III получим:

Настоящая исследовательская работа «Аналитические методы решения задач с параметрами» посвящена актуальному вопросу, систематизации методов решения задач с параметрами, сводящихся к исследованию квадратного трёхчлена.

В процессе работы были разработаны блок схемы, отображающие всевозможные варианты, возникающие при решении квадратных уравнений, исследованию корней квадратных уравнений.

Разработанные блок – схемы помогут учащимся решать задачи с параметрами, которые традиционно включаются в варианты предлагаемого Единого государственного экзамена, а также при подготовке к вступительным экзаменам по математике в вузы.

В процессе работы изучалась, обобщалась и анализировалась теория научных работ известных математиков, таких как Г.А. Ястребинского, С.А Шестакова, Е.В Юрченко и других.

1. Г. А. Ястребинецкий «Задачи с параметрами» Москва: «Просвещение», 1988 год

2. С. А. Шестаков, Е. В. Юрченко «Уравнения с параметром» Москва, 1993 г

3. И. А. Кушнир «Неравенства» Киев: Астарта, 1996 г.

4. П. И. Горнштейн, В. Б. Полонский «Задачи с параметрами»

М.: Илекса, 1998 г

5. И. А. Лепская, А. Е. Лепский «Методы решения задач с параметрами», материалы II методического семинара, Таганрог: ТРТУ, 2003 г.

Источник

Читайте также:  Мифология как способ восприятия мира
Оцените статью
Разные способы