Амфотерные оксиды свойства способы получения

Оксиды: классификация, получение и химические свойства

Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых — кислород со степенью окисления -2. При этом кислород связан только с менее электроотрицательным элементом.

В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).

Двойные оксиды — это некоторые оксиды , образованные элементом с разными степенями окисления.

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.

Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.

Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO.

Классификация оксидов

Получение оксидов

Общие способы получения оксидов:

1. Взаимодействие простых веществ с кислородом :

1.1. Окисление металлов: большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.

Например , алюминий взаимодействует с кислородом с образованием оксида:

Не взаимодействуют с кислородом золото, платина, палладий.

Натрий при окислении кислородом воздуха образует преимущественно пероксид Na2O2,

Калий, цезий, рубидий образуют преимущественно пероксиды состава MeO2:

Примечания : металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):

Железо также горит с образованием железной окалины — оксида железа (II, III):

1.2. Окисление простых веществ-неметаллов.

Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.

Например , фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):

Но есть некоторые исключения .

Например , сера сгорает только до оксида серы (IV):

Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:

2SO2 + O2 = 2SO3

Азот окисляется кислородом только при очень высокой температуре (около 2000 о С), либо под действием электрического разряда, и только до оксида азота (II):

Не окисляется кислородом фтор F2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl2, бром и др.), инертные газы (гелий He, неон, аргон, криптон).

Читайте также:  Вычисли рациональным способом ответ

2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.

При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.

Например , при сжигании пирита FeS2 образуются оксид железа (III) и оксид серы (IV):

Сероводород горит с образованием оксида серы (IV) при избытке кислорода и с образованием серы при недостатке кислорода:

А вот аммиак горит с образованием простого вещества N2, т.к. азот реагирует с кислородом только в жестких условиях:

А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):

3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).

гидроксид → оксид + вода

Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:

4. Еще один способ получения оксидов — разложение сложных соединений — солей .

Например , нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:

Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:

Более подробно про разложение нитратов можно прочитать в статье Окислительно-восстановительные реакции.

Химические свойства оксидов

Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.

Химические свойства основных оксидов

Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:

Источник

Химические свойства амфотерных оксидов

Перед изучением этого раздела рекомендую изучить следующие темы:

Химические свойства амфотерных оксидов

Амфотерные оксиды проявляют свойства и основных, и кислотных. От основных отличаются только тем, что могут взаимодействовать с растворами и расплавами щелочей и с расплавами основных оксидов, которым соответствуют щелочи.

1. Амфотерные оксиды взаимодействуют с кислотами и кислотными оксидами.

При этом амфотерные оксиды взаимодействуют, как правило, с сильными и средними кислотами и их оксидами.

Например , оксид алюминия взаимодействует с соляной кислотой, оксидом серы (VI), но не взаимодействует с углекислым газом и кремниевой кислотой:

амфотерный оксид + кислота = соль + вода

амфотерный оксид + кислотный оксид = соль

2. Амфотерные оксиды не взаимодействуют с водой.

Оксиды взаимодействуют с водой, только когда им соответствуют растворимые гидроксиды, а все амфотерные гидроксиды — нерастворимые.

амфотерный оксид + вода ≠

3. Амфотерные оксиды взаимодействуют с щелочами.

При этом механизм реакции и продукты различаются в зависимости от условий проведения процесса — в растворе или расплаве.

В растворе образуются комплексные соли, в расплаве — обычные соли.

Формулы комплексных гидроксосолей составляем по схеме:

  1. Сначала записываем центральный атом-комплекообразователь (это, как правило, амфотерный металл).
  2. Затем дописываем к центральному атому лиганды — гидроксогруппы. Число лигандов в 2 раза больше степени окисления центрального атома (исключение — комплекс алюминия, у него, как правило, 4 лиганда-гидроксогруппы).
  3. Заключаем центральный атом и его лиганды в квадратные скобки, рассчитываем суммарный заряд комплексного иона.
  4. Дописываем необходимое количество внешних ионов. В случае гидроксокомплексов это — ионы основного металла.
Читайте также:  Способ приготовления тесто слоеное пресное

Основные продукты взаимодействия соединений амфотерных металлов со щелочами сведем в таблицу.

Степень окисле-ния +2 (Zn, Sn, Be)

Металлы В расплаве щелочи В растворе щелочи
Соль состава X2YO2 * . Например: Na2ZnO2 Комплексная соль состава Х2[Y(OH)4] * . Например: Na2[Zn(OH)4]
Степень окисле-ния +3 (Al, Cr, Fe) Соль состава XYO2 (мета-форма) или X3YO3 (орто-форма). Например: NaAlO2 или Na3AlO3 Na3[Al(OH)6] или Na[Al(OH)4 Комплексная соль состава Х3[Y(OH)6] * или реже Х[Y(OH)4]. Например: Na[Al(OH)4]

* здесь Х — щелочной металл, Y — амфотерный металл.

Исключение — железо не образует гидроксокомплексы в растворе щелочи!

Например :

амфотерный оксид + щелочь (расплав) = соль + вода

амфотерный оксид + щелочь (раствор) = комплексная соль

4. Амфотерные оксиды взаимодействуют с основными оксидами.

При этом взаимодействие возможно только с основными оксидами, которым соответствуют щелочи и только в расплаве. В растворе основные оксиды взаимодействуют с водой с образованием щелочей.

амфотерный оксид + основный оксид = соль + вода

5. Окислительные и восстановительные свойства.

Амфотерные оксиды способны выступать и как окислители, и как восстановители и подчиняются тем же закономерностям, что и основные оксиды. Окислительно-восстановительные свойства амфотерных оксидов подробно рассмотрены в статье про основные оксиды.

6. Амфотерные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей.

Например , твердый оксид алюминия Al2O3 вытеснит более летучий углекислый газ из карбоната натрия при сплавлении:

Источник

Лабораторная работа № 1

Получение и химические свойства оксидов

Цель работы: ознакомиться с химическими свойствами оксидов и способами их получения. Освоить технику выполнения нагревания в открытом пламени.

Посуда и реактивы: пробирки, пробиркодержатель, спиртовка, фарфоровый тигель, коническая колба, микрошпатель. Набор индикаторов, магниевая лента, кусочки малахита, серы, дистиллированная вода.

Опыт № 1. Получение и свойства оксида магния

Небольшой кусочек магниевой ленты закрепить в пробиркодержатель и нагреть в пламени спиртовки до начала реакции. Работу надо проводить в темных защитных очках. Отметить, что магний горит ярким пламенем с выделением большого количества тепла. Продукт горения магния собрать в небольшой фарфоровый тигель или пробирку. Отметить цвет порошка. Написать уравнение реакции. Какими свойствами обладает этот порошок?

Полученный порошок растворить в небольшом количестве воды при нагревании. В этот раствор добавить 1–2 капли фенолфталеина. Отметить окраску фенолфталеина и сделать вывод. Напишите уравнения реакций.

Опыт № 2. Получение и свойства оксида меди ( II )

В пробирку поместить один микрошпатель карбоната гидроксомеди ( II ) ( CuOH )2 CO 3 (малахита). Отметить цвет соли. Закрепить пробирку в штативе , осторожно и равномерно прогреть всю пробирку.

Как изменился цвет малахита? Почему на стенках пробирки появились капельки воды? Если закрыть отверстие пробирки пробкой с газоотводной трубкой и опустить в известковую воду, то образуется белый осадок. Написать уравнения реакций. Охладить пробирку до комнатной температуры, прилить небольшое количество воды и осторожно взболтать. Осадку дать отстояться и сделать вывод о его растворимости.

Опыт № 3. Получение и свойства оксида серы ( IV )

В термостойкий стакан или коническую колбу налить небольшое количество воды. Нагреть в железной ложке небольшой кусочек серы до воспламенения, опустить ложку в стакан (не касаясь воды) и прикрыть сверху крышкой. Записать уравнения реакции горения серы, учитывая, что образуется оксид серы (1 V ). Затем убрать ложку, взболтать содержимое стакана и внести в раствор 3–4 капли лакмуса. Как изменится цвет индикатора? Напишите уравнения реакции. Сделайте соответствующие выводы.

Источник

Амфотерные оксиды. Химические свойства, способ получения

Характерные реакции

Амфотерные оксиды реагируют с сильными кислотами, образуя соли этих кислот. Такие реакции являются проявлением основных свойств амфотерных оксидов, например:

Они также реагируют с сильными щелочами, проявляя этим свои кислотные свойства, например:

ZnO + 2NaOH → Na2ZnO2 + H2O Амфотерные оксиды могут реагировать с щелочами двояко: в растворе и в расплаве.

  • При реакции с щёлочью в расплаве образуется обычная средняя соль(как показано на примере выше).
  • При реакции с щёлочью в растворе образуется комплексная соль.

Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4] (В данном случае образуется тетрагидроксоаллюминат натрия)

Для каждого амфотерного металла есть свое координационное число. Для Be и Zn — это 4; Для Al — это 4 или 6; Для Cr — это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Видео

Свойства оксидов

Оксиды бывают основные, амфотерные и кислотные. Рассмотрим их свойства.

Основные оксиды – это оксиды металлов, степень окисления которых либо +1, либо +2, и валентность которых 1, 2 или же 3 (только некоторые).

Пример основных оксидов: CaO, BaO, MgO, HgO, CuO и др.

Свойства основных оксидов

Основные оксиды, металлы которых в 1А-группе, реагируют с водой.

Реагируют с кислотами с образованием соли и H2O.

Также основные оксиды реагируют с другими двумя видами оксидов.

Возможно окисление кислородом.

Реагируют с солями:

Кислотные оксиды, они же ангидриды, – оксиды, у которых есть свои соответствующие кислоты. Они могут быть газами, жидкими веществами или же твердыми. Степень окисления кислотных оксидов от +4 до +7.

Свойства кислотных оксидов

Реагируют с водой, кроме SiO2. Образуется кислота.

Взаимодействуют с основаниями:

Реагируют с амфотерными и основными оксидами:

Реагируют с солями:

Амфотерные оксиды – оксиды, которые могут проявлять сразу основные и кислотные свойства. Степень окисления элементов, вступающих в реакцию с кислородом, в амфотерных оксидах либо +3, либо +4.

Свойства амфотерных оксидов

Оксиды данного вида не вступают в реакцию с водой.

Реагируют с кислотами:

Взаимодействуют с основными и кислотными оксидами:

Вступают в реакцию с основными или кислотными гидроксидами:

Источник

Читайте также:  Антигистаминные препараты способ применения
Оцените статью
Разные способы