База знаний
Амебоидное движение
Амебоидное движение является широко распространенной формой клеточного движения. Им обладают самые разнообразные клетки — простейшие из класса саркодовых, зооспоры, некоторые сперматозоиды (у аскариды) и яйцеклетки, плазмодии миксомицетов, фибробласты и лейкоциты, эпителиальные и нервные клетки в тканевых культурах, клетки эмбрионов позвоночных. Хорошо выражено амебоидное движение у миобластов, из которых и развиваются мышечные волокна. При регенерации эпителия клетки становятся подвижными и путем амебоидных движений перемещаются в глубь раны. Одним из способов распространения злокачественных новообразований внутри организма является амебоидное движение раковых клеток.
Амебоидное движение состоит в медленном перетекании тела клетки по субстрату и осуществляется благодаря внутриклеточному течению цитоплазмы и образованию временных псевдоподий (ложноножек). В наиболее простом случае образуется всего лишь одна Псевдоподия. Поверхностный слой клетки — эктоплазма (кортикальный или гиалиновый слой) — обладает высокой вязкостью и является, по-видимому, гелем. При образовании псевдоподий происходит превращение вязкого гиалинового слоя в легкотекучий золь, а более жидкая центральная часть протоплазмы (эндоплазма), существующая в форме белкового золя, перетекает в направлении движения в образующуюся псевдоподию. Эндоплазма в плазмодии слизевика образует одновременно несколько потоков, движущихся в разных направлениях.
Скорости амебоидного движения некоторых клеток представлены в таблице 17.
Таблица 17. Скорость амебоидного движения | |
Клетки | Скорость, мкм/с |
Свободно ползающие амебы | 0,5—4,5 |
Амебоидные зародыши слизистых споровиков | 0,33—1,3 |
Нейтрофильные лейкоциты | 0,58 |
Неполяризованные макрофаги | 0,004 |
Скорость движения зависит от температуры и кислотности среды, от осмотического давления, от соотношения концентрации одновалентных и двухвалентных катионов. Недостаток кислорода не прекращает амебоидного движения, но замедляет его. Под влиянием любого сильного раздражителя (0,1 M KCl, нагревание до 40°C, встряхивание) амеба сокращается, тело ее округляется, она теряет способность перемещаться по субстрату и изменять форму тела, а затем прекращается и движение гранул цитоплазмы.
Большинство современных теорий амебоидного движения являются контрактильными, объясняющими возникновение движущей силы за счет сокращения контрактильных структур цитоплазмы, в качестве которых рассматриваются микротрубочки и микронити, обнаруженные у многих видов амеб. Эти структуры могут либо свободно находиться в цитоплазме, либо образовывать агрегаты толщиной до 40 нм и более. Расположены они и в плазмалемме, и в эктоплазме на границе с эндоплазмой в виде параллельных пучков или в виде сетки, распространяющейся и в эндоплазму. Биохимическими исследованиями показано, что цитоплазматические фибриллы амеб содержат сократительные белки, подобные миксомиозину. Именно благодаря им глицеринизированные амебы и фибробласты реагируют на действие АТФ длительным сокращением всего тела.
Рис. 41. Схема образования псевдоподии у амебы согласно контрактильной гипотезе (Jdhn, Bovee, 1969): 1 — превращение геля (г) в золь (з) в области p; 2 — сокращение геля развивает силу (стрелки), вытесняющую золь по направлению к плазмалемме (п), Н — новые места образования геля; 3, 4, 5 — дальнейшие стадии удлинения псевдоподии, прикрепляющейся в m
Авторы разных теорий амебоидного движения не согласны лишь относительно места, где возникают эти движущие силы. Одни считают, что амеба передвигается, «выдавливая» себя в псевдоподию за счет давления, создаваемого сокращением кортикального геля в заднем конце клетки, которое и заставляет течь жидкую эндоплазму (рис. 41). Эта гипотеза основывается на сократительных свойствах эктоплазмы, состоящей из актомиозинового геля, который, уплотняясь, сокращается.
Согласно представлению других, цитоплазма подтягивается вперед в образующуюся псевдоподию благодаря сокращению эндоплазмы в переднем конце клетки. Некоторые исследователи полагают, что силы, необходимые для движения протоплазмы, локализованы в самих псевдоподиях и возникают благодаря активному скольжению гелевых нитей или эндоплазмы по поверхности кортикального слоя. Подчеркивается также роль активного растяжения или расслабления плазмалеммы в амебоидном движении.
Амебоидное движение следует рассматривать как сложный многоступенчатый процесс, включающий и течение цитоплазмы (циклоз), и изменение ее состояния (золь ⇔ гель), а также плазмалеммы и формы тела, и образование новых псевдоподий, и, наконец, прикрепление к субстрату. Поэтому механизм амебоидного движения нельзя свести только к механизму течения цитоплазмы, он, несомненно, является гораздо более сложным (Серавин, 1967).
Источник
Амёбоидное движение
Амебоидное движение — тип движения, присущий корненожкам и некоторым отдельным клеткам многоклеточных животных (например — лейкоцитам крови).
Содержание
Механизм
Пока у биологов нет единого мнения о том, что является причиной амебоидного движения. У клетки образуются выросты цитоплазмы, число и величина которых постоянно меняются, как меняется и форма самой клетки
Особенности движения у разных таксонов
Амебоидное движение — свойственно простейшим, не имеющим определенных органов движения, а выпускающим непостоянные отростки — псевдоподии. А. движение может быть свойственно в течение всей жизни животному или только в известной стадии. В известных стадиях оно свойственно и некоторым растительным организмам. Равно наблюдается оно и на клетках высших организмов, как кровяные клетки, яйца, живчики и др.
Типы амебоидного жвижения
Различают А. движение при помощи переливания, при чем псевдоподии выпускаются в одной плоскости и, вероятно, животное прикрепляет их как и свое тело к тому предмету, по которому движется, выделением клейкого вещества (Румблер). Затем наблюдают А. движение вращательное, при котором псевдоподии образуются во всех плоскостях и приклеивающее вещество не выделяется. Животное поворачивается на ту сторону, где псевдоподий больше (напр. Amoeba verrucosa). Искусственное воспроизведение А. движения на различных смесях было сделано Бючли, потом Румблером и др. (см. Протоплазма). Теории А. движения вполне установленной нет. Надо думать, что движение это будет сведено к сокращению отдельных физиологических единиц клетки.
См. также
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Амёбоидное движение» в других словарях:
Движение (биология) — У этого термина существуют и другие значения, см. Движение. Движение (в биологии) одно из проявлений жизнедеятельности, обеспечивающее организму возможность активного взаимодействия со средой, в частности, перемещение с места на место,… … Википедия
Протоплазма или саркода* — Содержание статьи: Определение и история теории П. Физические и морфологические свойства П. Тончайшее строение П. и главнейшие теории. Химические свойства П. Физиологические свойства П.: движение, раздражимость, формирующая деятельность,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Протоплазма или саркода — Содержание статьи: Определение и история теории П. Физические и морфологические свойства П. Тончайшее строение П. и главнейшие теории. Химические свойства П. Физиологические свойства П.: движение, раздражимость, формирующая деятельность,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Модели (в биологии) — Модели в биологии применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно системном, организменном и популяционно биоценотическом. Возможно… … Большая советская энциклопедия
Псевдоподии — (от Псевдо. и греч. pús, родительный падеж podós нога) ложноножки, временные цитоплазматические выросты у одноклеточных организмов (Корненожки, некоторые жгутиковые, споровики и миксомицеты), а также у некоторых клеток многоклеточных… … Большая советская энциклопедия
Модели — I Модели в биологии применяются для моделирования (См. Моделирование) биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно системном, организменном и популяционно … Большая советская энциклопедия
Ложноножка — Псевдоподия или ложноножка (от псевдо. и греч. pús, родительный падеж podós нога), ложноножки, временные цитоплазматические выросты у одноклеточных организмов (корненожки, некоторые жгутиковые, споровики и миксомицеты), а также у некоторых… … Википедия
Ложноножки — Псевдоподия или ложноножка (от псевдо. и греч. pús, родительный падеж podós нога), ложноножки, временные цитоплазматические выросты у одноклеточных организмов (корненожки, некоторые жгутиковые, споровики и миксомицеты), а также у некоторых… … Википедия
АМЁБОИДНЫЙ — Схожий с амёбой. Амёбоидное движение. Способ передвижения свойственный амёбам. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АМЕБОИДНЫЙ похожий на амебу; амеб. клетки такие животные, которые движутся и питаются… … Словарь иностранных слов русского языка
АМЕБОИДНЫЙ — АМЁБОИДНЫЙ Схожий с амёбой. Амёбоидное движение. Способ передвижения свойственный амёбам. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АМЕБОИДНЫЙ похожий на амебу; амеб. клетки такие животные, которые движутся и … Словарь иностранных слов русского языка
Источник
Амебоидный способ движения присущий
Движение — это жизнь. Все живые организмы движутся , какие-то медленно, какие-то быстрее.
Движение — это жизнь. Все живые организмы движутся , какие-то медленно, какие-то быстрее.
Неподвижные растения движутся, медленно, но верно, эти движения называют или настиями, или тропизмами. Животные подвижны, даже прикрепленные организмы совершают движения, не перемещаясь в пространстве. Так что движение — это действительно жизнь.
Перемещается организм, его части, жидкости внутри него. Поэтому механизмы интересны специалистам и тем кто готовится стать этими специалистами. Возможно эти механизмы смогут объяснить особенности животных и их клеток, что будет интересно для тех, кто просто интересуется биологией.
Клетка является структурно функциональной единицей живого. Одноклеточные организмы подвижны и их особенности движения используются клетками в составе многоклеточных организмов. Именно поэтому наша серия статей начнется с движения одноклеточных.
Одноклеточные организмы имеют специальные органеллы для передвижения: реснички и жгутики. Эти органеллы имеют особое строение и механизмы движения, поэтому заслуживают отдельного рассмотрения, что будет сделано в следующей статье.
Второй механизм связан с перемещением за счет движения цитоплазмы, или амебоидного движения. «Ползет амеба, да по субстрату» * — именно так и перемещаются амебы и подобные им одноклеточные. Такое движение возможно если содержимое клетки жидкое и может перетекать, и, в то же время, движение жидкости внутри клетки упорядочено и имеет определенное направление.
Определение амебоидных клеток данное Левенгуком говорит, что такая клетка — это «мешочек с жидкой кашей». То есть содержимое клетки является жидкой субстанцией или плохо застывшим желе, такие растворы называют коллоидными.
Наружная или цитоплазматическая мембрана — это нерастворимая в воде (гидрофобная) пленка, которая тоже жидкая во вязкости сходная с оливковым маслом.
То есть клетка амебы — это вязкая жидкая субстанция, покрытая вязкой пленкой. Такие полужидкие конструкции легко принимают форму внешних систем как желе принимает форму чашки, в которую это желе заливают. Желе застывает и поддерживает затем свою форму самостоятельно. В то же время, если желе вытряхнуть из формы и оставить на длительное время — оно растекается, теряя прежнюю форму и оплывая под воздействием сил тяжести и внешних факторов (влажность, температура).
Клетки амеб не имеют такой формы и, казалось бы, должны растекаться в блинчик, но этого не происходит. Известно, что если нет внешнего каркаса, то для поддержания формы должен быть внутренний каркас. Эту роль и выполняет цитоскелет.
Цитоскелет — это трехмерная сеть из трубочек и нитей, расположенная внутри клетки. Эта трехмерная сеть погружена в вязкую жидкость цитоплазмы и окружена мембраной, нерастворимой в воде пленкой, особенно если сеть трубочек и нитей образует скопление под мембраной. Систему цитоскелета можно представить как комок нитей, более плотных ближе к поверхности. Этот комок насыщен полужидким желе, покрытый сверху аналогом мыльного пузыря.
Такая конструкция легко поддерживает форму, но движение требует перестройки этой формы. Такое возможно если нити могут двигаться относительно друг друга, или нити и микротрубочки легко разбираются с одной стороны и наращиваются с другой, это позволяет перестраивать трехмерную структуру в определенном направлении. Экспериментальные исследования говорят в пользу перестройки. Трубочки цитоскелета или микротрубочки образованы округлыми частицами белка тубулина, которые, объединяясь как кирпичи, образуют что-то вроде кирпичной трубы, где труба это микротрубочка, а кирпичи — белок тубулин.
В отличие от кирпичной трубы, у микротрубочек нет аналога цементной связки, поэтому микротрубочка легко собирается и легко разбирается. В случае нитей основную часть составляют нити актина, которые представляют собой цепи из округлых части белка актина, сборка и разборка таких структур еще легче, чем для трубочек. То есть все компоненты цитоскелета лабильны: легко собираются и разбираются.
Итак, все составляющие системы рассмотрены и можно представить процесс перемещения.
Цитоскелет его нити и микротрубочки образуют шарообразный комок, более плотный ближе к поверхности, жидкое содержимое клетки заполняет просветы между нитями и трубочками, сверху жидкая мембрана.
Когда обнаруживается нужное направление начинается нарастание пучка актиновых нитей и микротрубочек, жидкость пассивно перетекает за ними, а мембрана растягивается, образуется вырост цитоскелета и цитоплазмы. Такой вырост, окруженный мембраной называют псевдоподией или ложноножкой. Эта псевдоподия образует контакт с субстратом и прикрепляется к нему, в результате клетка закрепляется (пока частично) на новой территории. Затем происходит отсоединение мембраны остальной части клетки, в результате клетка крепится к субстрату только за счет прикрепления ложноножки к субстрату.
Параллельно происходит рост нитей актина и микротрубочек в сторону ложноножки. Но растет не один пучок, а во всем объеме, а в открепленной противоположной направлению роста ложноожки части клетки происходит разбора цитоскелета.
То есть сначала он растет частично, формируя вырост, чтобы не вызывать разрыва цитоплазмы и мембраны, это вырост крепится к субстрату, а затем происходит массовое увеличение нитей и микротрубочек цитоскелета в направлении роста ложноножки. Противоположные концы разбираются, происходит направленная перестройка трехмерной сети цитоскетлета.
В некотором приближении, как аналогию, можно привести такой пример: человек с двумя кусками полиэтиленовой пленки перемещается через помещение со свежеокрашенным полом, краска на котором высохла не до конца . Задача — не испортить покрытие пола и не испачкать обувь. Укладываем на пол пленку, наступаем на нее. Укладываем перед собой второй кусок, перешагиваем на него. Оборачиваемся, подцепляем кончиком ногтя край первого куска на полу, отслаиваем, перекладываем перед собой. Переходим уже на второй кусок полиэтилена, оборачиваемся… И, таким вот образом, медленно, но верно, пока не доберемся до выхода.
Именно так и происходит перемещение цитоскелета клетки: компоненты цитоскелета собираются в одном направлении и разбираются с противоположного, жидкие компоненты клетки или пассивно или в связи с цитоскелетом перетекают за его перемещением, также перемещается и мембрана.
Вот так и перемещается амеба по субстрату.
В следующей серии будет рассмотрен процесс работы жгутиков и ресничек.
* — в тексте цитирована фраза из песни, составляющей биофаковский фольклор. Установить авторство не представляется возможным.
Ползет амеба, да по субстрату,
Махает псевдоподией.
А ей положено по штату
Такой быть уродиной.
Нет стройных ножек, нет красных губок,
Один лишь голый протопласт,
И вот такие вот уроды
Простейших составляют класс.
Нет размноженья полового
В различных вариациях,
Не наслаждаются партнеры
Взаимной коньюгацией.
Источник