Алгоритмический способ генерации случайных чисел

Тесты — Упрощенная генерация случайных чисел

Случайные числа используются во многих алгоритма х машинного обучения. Например, распространенной задачей является выбор случайной строки матрицы. В C# код может выглядеть так:

В этой статье я покажу, как генерировать случайные числа с помощью четырех разных алгоритмов: алгоритма Лемера (Lehmer), линейного конгруэнтного алгоритма ( linear congruential algorithm), алгоритма Вичмана-Хилла (Wichmann-Hill) и алгоритма Фибоначчи с запаздываниями (lagged Fibonacci algorithm).

Но зачем обременять себя созданием собственного генератора случайных чисел (random number generator, RNG), когда в Microsoft .NET Framework уже есть эффективный и простой в использовании класс Random? Существует два сценария, где вам может понадобиться создать свой RNG. Во-первых, в разные языки программирования встроены разные алгоритмы генерации случайных чисел, а значит, если вы пишете код, который будет переноситься на несколько языков, можно создать собственный RNG, чтобы реализовать его во всех нужных вам языках. Во-вторых, некоторые языки, в частности R, имеют лишь глобальный RNG, поэтому, если вы захотите создать несколько генераторов, вам придется писать свой RNG.

Хороший способ получить представление о том, куда я клоню в этой статье, — взглянуть на демонстрационную программу на рис. 1. Демонстрационная программа начинает с создания очень простого RNGЮ используя алгоритм Лемера. Затем с помощью RNG генерируется 1000 случайных целых чисел между 0 и 9 включительно. За кулисами записываются счетчики для каждого из сгенерированных целых чисел, которые потом отображаются на экране. Этот процесс повторяется для линейного конгруэнтного алгоритма, алгоритма Вичмана-Хилла и алгоритм Фибоначчи с запаздываниями.


Рис. 1. Демонстрация упрощенной генерации случайных чисел

В этой статье предполагается, что вы умеете программировать хотя бы на среднем уровне, но ничего не знаете о генерации случайных чисел. Демонстрационная программа написана на C#, но, поскольку один из основных случаев использования собственной генерации случайных чисел — написание портируемого кода, эта программа разработана так, чтобы ее можно было легко транслировать на другие языки.

Алгоритм Лемера

Самый простой приемлемый метод генерации случайных чисел — алгоритм Лемера. (Для простоты я использую термин «генерация случайных чисел» вместо более точного термина «генерация псевдослучайных чисел».) Выраженный в символьном виде, алгоритм Лемера представляет собой следующее:

На словах это звучит так: «новое случайное число является старым случайным числом, умножаемым на константу a, после чего над результатом выполняется операция по модулю константы m». Например, предположим, что в некий момент текущее случайное число равно 104, a = 3 и m = 100. Тогда новое случайное число будет равно 3 * 104 mod 100 = 312 mod 100 = 12. Вроде бы просто, но в реализации этого алгоритма много хитроумных деталей.

Чтобы создать демонстрационную программу, я запустил Visual Studio, выбрал шаблон C# Console Application и назвал проект RandomNumbers. В этой программе нет значимых зависимостей от .NET Framework, поэтому подойдет любая версия Visual Studio.

После загрузки кода шаблона в окно редактора я переименовал в окне Solution Explorer файл Program.cs в более описательный RandomNumbersProgram.cs, и Visual Studio автоматически переименовала класс Program за меня. В начале кода я удалил все лишние выражения using, оставив только ссылки на пространства имен верхнего уровня System и Collections.Generic.

Затем я добавил класс с именем LehmerRng для реализации RNG-алгоритма Лемера. Код показан на рис. 2. Версия алгоритма Лемера за 1988 год использует a = 16807 и m = 2147483647 (которое является int.MaxValue). Позднее, в 1993 году Лемер предложил другую версию, где a = 48271 как чуть более качественную альтернативу. Эти значения берутся из математической теории. Демонстрационный код основан на знаменитой статье С. К. Парка (S. K. Park) и К. У. Миллера (K. W. Miller) «Random Number Generators: Good Ones Are Hard to Find».

Рис. 2. Реализация алгоритма Лемера

Проблема реализации в том, чтобы предотвращать арифметическое переполнение. Алгоритм Лемера использует ловкий алгебраический трюк. Значение q является результатом m / a (целочисленное деление), а значение r равно m % a (m по модулю a).

При инициализации RNG Лемера начальным (зародышевым) значением можно использовать любое целое число в диапазоне [1, int.MaxValue – 1]. Многие RNG имеют конструктор без параметров, который получает системные дату и время, преобразует их в целое число и использует в качестве начального значения.

RNG Лемера вызывается в методе Main демонстрационной программы:

Каждый вызов метода Next возвращает значение в диапазоне [0.0, 1.0) — больше или равно 0.0 и строго меньше 1.0. Шаблон (int)(hi – lo) * Next + lo) будет возвращать целое число в диапазоне [lo, hi–1].

Алгоритм Лемера весьма эффективен, и в простых сценариях я обычно выбираю именно его. Но заметьте, что ни один алгоритм из представленных в этой статье не обладает надежностью криптографического уровня и что их следует применять только в ситуациях, где не требуется статической строгости (statistical rigor).

Алгоритм Вичмана-Хилла

Этот алгоритм датируется 1982 годом. Идея Вичмана-Хилла заключается в генерации трех предварительных результатов и последующего их объединения в один финальный результат. Код, реализующий алгоритм Вичмана-Хилла, представлен на рис. 3. Демонстрационный код основан на статье Б. А. Вичмана (B. A. Wichmann) и А. Д. Хилла (I. D. Hill) «Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator».

Рис. 3. Реализация алгоритма Вичмана-Хилла

Поскольку алгоритм Вичмана-Хилла использует три разных генерирующих уравнения, он требует трех начальных значений. В этом алгоритме три m-значения равны 30269, 30307 и 30323, поэтому вам понадобятся три начальных значения в диапазоне [1, 30000]. Вы могли бы написать конструктор, принимающий эти три значения, но тогда вы получили бы несколько раздражающий программный интерфейс. В демонстрации применяется параметр с одним начальным значением, генерирующим три рабочих зародыша.

Вызов RNG Вичмана-Хилла осуществляется по тому же шаблону, что и других демонстрационных RNG:

Алгоритм Вичмана-Хилла лишь немного труднее в реализации, чем алгоритм Лемера. Преимущество первого над вторым в том, что алгоритм Вичмана-Хилла генерирует более длинную последовательность (более 6 000 000 000 000 значений) до того, как начнет повторяться.

Линейный конгруэнтный алгоритм

Оказывается, и алгоритм Лемера, и алгоритм Вичмана-Хилла можно считать особыми случаями так называемого линейного конгруэнтного алгоритма (linear congruential, LC). Выраженный в виде уравнения, LC выглядит так:

Это точно соответствует алгоритму Лемера с добавлением дополнительной константы c. Включение c придает универсальному LC-алгоритму несколько лучшие статистические свойства по сравнению с алгоритмом Лемера. Демонстрационная реализация LC-алгоритма показана на рис. 4. Код основан на стандарте POSIX (Portable Operating System Interface).

Рис. 4. Реализация линейного конгруэнтного алгоритма

LC-алгоритм использует несколько битовых операций. Здесь идея в том, чтобы в базовых математических типах работать не с целым типом (32 бита), а с длинным целым (64 бита). По окончании 32 из этих битов (с 16-го по 47-й включительно) извлекаются и преобразуются в целое число. Этот подход дает более качественные результаты, чем при использовании просто 32 младших или старших битов, но за счет некоторого усложнения кодирования.

В демонстрации генератор случайных чисел LC вызывается так:

Заметьте, что в отличие от генераторов Лемера и Вичмана-Хилла генератор LC может принимать начальное значение 0. Конструктор в демонстрации LC копирует значение входного параметра seed непосредственно в член класса — поле seed. Многие распространенные реализации LC выполняют предварительные манипуляции над входным начальным значением, чтобы избежать генерации хорошо известных серий начальных значений.

Алгоритм Фибоначчи с запаздываниями

Этот алгоритм, выраженный уравнением, выглядит так:

Если на словах, то новое случайное число является тем, которое было сгенерировано 7 раз назад, плюс случайное число, сгенерированное 10 раз назад, и деленное по модулю на большое значение m. Значения (7, 10) можно изменять, как я вскоре поясню.

Допустим, что в некий момент времени последовательность сгенерированных чисел следующая:

где 561 — самое последнее из сгенерированных значений. Если m = 100, то следующим случайным числом будет:

Заметьте, что в любой момент вам всегда нужны 10 самых последних сгенерированных значений. Поэтому ключевая задача в алгоритме Фибоначчи с запаздываниями состоит в генерации начальных значений, необходимых для запуска процесса. Демонстрационная реализация алгоритма Фибоначчи с запаздываниями приведена на рис. 5.

Читайте также:  Полифония это особый способ изложения музыкальной мысли который должен восприниматься как

Рис. 5. Реализация алгоритма Фибоначчи с запаздываниями

Демонстрационный код использует предыдущие случайные числа X(i–7) и X(i–10) для генерации следующего случайного числа. В научно-исследовательской литературе по этой тематике значения (7, 10) обычно обозначаются (j, k). Существуют другие пары (j, k), которые можно применять для алгоритма Фибоначчи с запаздываниями. Несколько значений, рекомендованных в хорошо известной книге «Art of Computer Programming» (Addison-Wesley, 1968), — (24,55), (38,89), (37,100), (30,127), (83,258), (107,378).

Чтобы инициализировать (j, k) в RNG Фибоначчи с запаздываниями, вы должны предварительно заполнить список значениями k. Это можно сделать несколькими способами. Однако наименьшее из начальных значений k обязательно должно быть нечетным. В демонстрации применяется грубый метод копирования значения параметра seed для всех начальных значений k с последующим удалением первой 1000 сгенерированных значений. Если значение параметра seed четное, тогда первое из значений k выставляется равным 11 (произвольному нечетному числу).

Чтобы предотвратить арифметическое переполнение, метод Next использует тип long для вычислений и математическое свойство: (a + b) mod n = [(a mod n) + (b mod n)] mod n.

Заключение

Позвольте мне подчеркнуть, что все четыре RNG, представленные в этой статье, предназначены только для некритичных случаев применения. С учетом этого я прогнал все RNG через набор хорошо известных базовых тестов на степень случайности, и они прошли эти тесты. Но даже при этом коварство RNG всем хорошо известно, и время от времени даже в стандартных RNG обнаруживаются дефекты, иногда лишь спустя годы их использования. Например, в 1960-х годах IBM распространяла реализацию линейного конгруэнтного алгоритма под названием RANDU, которая, как оказалось, обладала невероятно плохими качествами. А в Microsoft Excel 2008 была выявлена ужасно проблемная реализация алгоритма Вичмана-Хилла.

Нынешний фаворит в генерации случайных чисел — алгоритм Фортуна (Fortuna) (названный в честь римской богини удачи). Алгоритм Фортуна был опубликован в 2003 году и основан на математической энтропии плюс сложных шифровальных методах, таких как AES (Advanced Encryption System).

Джеймс Маккафри (Dr. James McCaffrey) — работает на Microsoft Research в Редмонде (штат Вашингтон). Принимал участие в создании нескольких продуктов Microsoft, в том числе Internet Explorer и Bing. С ним можно связаться по адресу jammc@microsoft.com.

Выражаю благодарность за рецензирование статьи экспертам Microsoft Крису Ли (Chris Lee) и Кирку Олинику (Kirk Olynyk).

Источник

Лекция 22.
Генераторы случайных чисел

В основе метода Монте-Карло (см. Лекцию 21. Статистическое моделирование) лежит генерация случайных чисел, которые должны быть равномерно распределены в интервале (0; 1) .

Если генератор выдает числа, смещенные в какую-то часть интервала (одни числа выпадают чаще других), то результат решения задачи, решаемой статистическим методом, может оказаться неверным. Поэтому проблема использования хорошего генератора действительно случайных и действительно равномерно распределенных чисел стоит очень остро.

Математическое ожидание mr и дисперсия Dr такой последовательности, состоящей из n случайных чисел ri , должны быть следующими (если это действительно равномерно распределенные случайные числа в интервале от 0 до 1):

Если пользователю потребуется, чтобы случайное число x находилось в интервале (a; b) , отличном от (0; 1) , нужно воспользоваться формулой x = a + (b – a) · r , где r — случайное число из интервала (0; 1) . Законность данного преобразования демонстрируется на рис. 22.1 .

Рис. 22.1. Схема перевода числа из интервала (0; 1) в интервал (a; b)

Теперь x — случайное число, равномерно распределенное в диапазоне от a до b .

За эталон генератора случайных чисел (ГСЧ) принят такой генератор, который порождает последовательность случайных чисел с равномерным законом распределения в интервале (0; 1) . За одно обращение данный генератор возвращает одно случайное число. Если наблюдать такой ГСЧ достаточно длительное время, то окажется, что, например, в каждый из десяти интервалов (0; 0.1) , (0.1; 0.2) , (0.2; 0.3) , , (0.9; 1) попадет практически одинаковое количество случайных чисел — то есть они будут распределены равномерно по всему интервалу (0; 1) . Если изобразить на графике k = 10 интервалов и частоты Ni попаданий в них, то получится экспериментальная кривая плотности распределения случайных чисел (см. рис. 22.2 ).

Рис. 22.2. Частотная диаграмма выпадения случайных чисел,
порождаемых реальным генератором

Заметим, что в идеале кривая плотности распределения случайных чисел выглядела бы так, как показано на рис. 22.3 . То есть в идеальном случае в каждый интервал попадает одинаковое число точек: Ni = N/k , где N — общее число точек, k — количество интервалов, i = 1, , k .

Рис. 22.3. Частотная диаграмма выпадения случайных чисел,
порождаемых идеальным генератором теоретически

Следует помнить, что генерация произвольного случайного числа состоит из двух этапов:

  • генерация нормализованного случайного числа (то есть равномерно распределенного от 0 до 1);
  • преобразование нормализованных случайных чисел ri в случайные числа xi , которые распределены по необходимому пользователю (произвольному) закону распределения или в необходимом интервале.

Генераторы случайных чисел по способу получения чисел делятся на:

Физические ГСЧ

Примером физических ГСЧ могут служить: монета («орел» — 1, «решка» — 0); игральные кости; поделенный на секторы с цифрами барабан со стрелкой; аппаратурный генератор шума (ГШ), в качестве которого используют шумящее тепловое устройство, например, транзистор ( рис. 22.4–22.5 ).

Рис. 22.4. Схема аппаратного метода генерации случайных чисел

Рис. 22.5. Диаграмма получения случайных чисел аппаратным методом
Задача «Генерация случайных чисел при помощи монеты»

Сгенерируйте случайное трехразрядное число, распределенное по равномерному закону в интервале от 0 до 1, с помощью монеты. Точность — три знака после запятой.

Первый способ решения задачи
Подбросьте монету 9 раз, и если монета упала решкой, то запишите «0», если орлом, то «1». Итак, допустим, что в результате эксперимента получили случайную последовательность 100110100.

Начертите интервал от 0 до 1. Считывая числа в последовательности слева направо, разбивайте интервал пополам и выбирайте каждый раз одну из частей очередного интервала (если выпал 0, то левую, если выпала 1, то правую). Таким образом, можно добраться до любой точки интервала, сколь угодно точно.

Итак, 1: интервал [0; 1] делится пополам — [0; 0.5] и [0.5; 1] , — выбирается правая половина, интервал сужается: [0.5; 1] . Следующее число, 0: интервал [0.5; 1] делится пополам — [0.5; 0.75] и [0.75; 1] , — выбирается левая половина [0.5; 0.75] , интервал сужается: [0.5; 0.75] . Следующее число, 0: интервал [0.5; 0.75] делится пополам — [0.5; 0.625] и [0.625; 0.75] , — выбирается левая половина [0.5; 0.625] , интервал сужается: [0.5; 0.625] . Следующее число, 1: интервал [0.5; 0.625] делится пополам — [0.5; 0.5625] и [0.5625; 0.625] , — выбирается правая половина [0.5625; 0.6250] , интервал сужается: [0.5625; 0.6250] .

По условию точности задачи решение найдено: им является любое число из интервала [0.5625; 0.6250] , например, 0.625.

В принципе, если подходить строго, то деление интервалов нужно продолжить до тех пор, пока левая и правая границы найденного интервала не СОВПАДУТ между собой с точностью до третьего знака после запятой. То есть с позиций точности сгенерированное число уже не будет отличимо от любого числа из интервала, в котором оно находится.

Второй способ решения задачи
Разобьем полученную двоичную последовательность 100110100 на триады: 100, 110, 100. После перевода этих двоичных чисел в десятичные получаем: 4, 6, 4. Подставив спереди «0.», получим: 0.464. Таким методом могут получаться только числа от 0.000 до 0.777 (так как максимум, что можно «выжать» из трех двоичных разрядов — это 1112 = 78) — то есть, по сути, эти числа представлены в восьмеричной системе счисления. Для перевода восьмеричного числа в десятичное представление выполним:
0.4648 = 4 · 8 –1 + 6 · 8 –2 + 4 · 8 –3 = 0.601562510 = 0.60210 .
Итак, искомое число равно: 0.602.

Табличные ГСЧ

Табличные ГСЧ в качестве источника случайных чисел используют специальным образом составленные таблицы, содержащие проверенные некоррелированные, то есть никак не зависящие друг от друга, цифры. В табл. 22.1 приведен небольшой фрагмент такой таблицы. Обходя таблицу слева направо сверху вниз, можно получать равномерно распределенные от 0 до 1 случайные числа с нужным числом знаков после запятой (в нашем примере мы используем для каждого числа по три знака). Так как цифры в таблице не зависят друг от друга, то таблицу можно обходить разными способами, например, сверху вниз, или справа налево, или, скажем, можно выбирать цифры, находящиеся на четных позициях.

Таблица 22.1.
Случайные цифры. Равномерно
распределенные от 0 до 1 случайные числа
Случайные цифры Равномерно распределенные
от 0 до 1 случайные числа
9 2 9 2 0 4 2 6 0.929
9 5 7 3 4 9 0 3 0.204
5 9 1 6 6 5 7 6 0.269

Достоинство данного метода в том, что он дает действительно случайные числа, так как таблица содержит проверенные некоррелированные цифры. Недостатки метода: для хранения большого количества цифр требуется много памяти; большие трудности порождения и проверки такого рода таблиц, повторы при использовании таблицы уже не гарантируют случайности числовой последовательности, а значит, и надежности результата.

Здесь находится таблица, содержащая 500 абсолютно случайных проверенных чисел (взято из книги И. Г. Венецкого, В. И. Венецкой «Основные математико-статистические понятия и формулы в экономическом анализе»).

Алгоритмические ГСЧ

Числа, генерируемые с помощью этих ГСЧ, всегда являются псевдослучайными (или квазислучайными), то есть каждое последующее сгенерированное число зависит от предыдущего:

Последовательности, составленные из таких чисел, образуют петли, то есть обязательно существует цикл, повторяющийся бесконечное число раз. Повторяющиеся циклы называются периодами .

Достоинством данных ГСЧ является быстродействие; генераторы практически не требуют ресурсов памяти, компактны. Недостатки: числа нельзя в полной мере назвать случайными, поскольку между ними имеется зависимость, а также наличие периодов в последовательности квазислучайных чисел.

Рассмотрим несколько алгоритмических методов получения ГСЧ:

  • метод серединных квадратов;
  • метод серединных произведений;
  • метод перемешивания;
  • линейный конгруэнтный метод.

Метод серединных квадратов

Имеется некоторое четырехзначное число R0 . Это число возводится в квадрат и заносится в R1 . Далее из R1 берется середина (четыре средних цифры) — новое случайное число — и записывается в R0 . Затем процедура повторяется (см. рис. 22.6 ). Отметим, что на самом деле в качестве случайного числа необходимо брать не ghij, а 0.ghij — с приписанным слева нулем и десятичной точкой. Этот факт отражен как на рис. 22.6 , так и на последующих подобных рисунках.

Рис. 22.6. Схема метода серединных квадратов

Недостатки метода: 1) если на некоторой итерации число R0 станет равным нулю, то генератор вырождается, поэтому важен правильный выбор начального значения R0 ; 2) генератор будет повторять последовательность через M n шагов (в лучшем случае), где n — разрядность числа R0 , M — основание системы счисления.

Для примера на рис. 22.6 : если число R0 будет представлено в двоичной системе счисления, то последовательность псевдослучайных чисел повторится через 2 4 = 16 шагов. Заметим, что повторение последовательности может произойти и раньше, если начальное число будет выбрано неудачно.

Описанный выше способ был предложен Джоном фон Нейманом и относится к 1946 году. Поскольку этот способ оказался ненадежным, от него очень быстро отказались.

Метод серединных произведений

Число R0 умножается на R1 , из полученного результата R2 извлекается середина R2 * (это очередное случайное число) и умножается на R1 . По этой схеме вычисляются все последующие случайные числа (см. рис. 22.7 ).

Рис. 22.7. Схема метода серединных произведений

Метод перемешивания

В методе перемешивания используются операции циклического сдвига содержимого ячейки влево и вправо. Идея метода состоит в следующем. Пусть в ячейке хранится начальное число R0 . Циклически сдвигая содержимое ячейки влево на 1/4 длины ячейки, получаем новое число R0 * . Точно так же, циклически сдвигая содержимое ячейки R0 вправо на 1/4 длины ячейки, получаем второе число R0 ** . Сумма чисел R0 * и R0 ** дает новое случайное число R1 . Далее R1 заносится в R0 , и вся последовательность операций повторяется (см. рис. 22.8 ).

Рис. 22.8. Схема метода перемешивания

Обратите внимание, что число, полученное в результате суммирования R0 * и R0 ** , может не уместиться полностью в ячейке R1 . В этом случае от полученного числа должны быть отброшены лишние разряды. Поясним это для рис. 22.8 , где все ячейки представлены восемью двоичными разрядами. Пусть R0 * = 100100012 = 14510 , R0 ** = 101000012 = 16110 , тогда R0 * + R0 ** = 1001100102 = 30610 . Как видим, число 306 занимает 9 разрядов (в двоичной системе счисления), а ячейка R1 (как и R0 ) может вместить в себя максимум 8 разрядов. Поэтому перед занесением значения в R1 необходимо убрать один «лишний», крайний левый бит из числа 306, в результате чего в R1 пойдет уже не 306, а 001100102 = 5010 . Также заметим, что в таких языках, как Паскаль, «урезание» лишних битов при переполнении ячейки производится автоматически в соответствии с заданным типом переменной.

Линейный конгруэнтный метод

Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(x, y) , возвращающая остаток от деления первого аргумента на второй. Каждое последующее случайное число рассчитывается на основе предыдущего случайного числа по следующей формуле:

Последовательность случайных чисел, полученных с помощью данной формулы, называется линейной конгруэнтной последовательностью . Многие авторы называют линейную конгруэнтную последовательность при b = 0 мультипликативным конгруэнтным методом , а при b ≠ 0 — смешанным конгруэнтным методом .

Для качественного генератора требуется подобрать подходящие коэффициенты. Необходимо, чтобы число M было довольно большим, так как период не может иметь больше M элементов. С другой стороны, деление, использующееся в этом методе, является довольно медленной операцией, поэтому для двоичной вычислительной машины логичным будет выбор M = 2 N , поскольку в этом случае нахождение остатка от деления сводится внутри ЭВМ к двоичной логической операции «AND». Также широко распространен выбор наибольшего простого числа M , меньшего, чем 2 N : в специальной литературе доказывается, что в этом случае младшие разряды получаемого случайного числа ri + 1 ведут себя так же случайно, как и старшие, что положительно сказывается на всей последовательности случайных чисел в целом. В качестве примера можно привести одно из чисел Мерсенна, равное 2 31 – 1 , и таким образом, M = 2 31 – 1 .

Одним из требований к линейным конгруэнтным последовательностям является как можно большая длина периода. Длина периода зависит от значений M , k и b . Теорема, которую мы приведем ниже, позволяет определить, возможно ли достижение периода максимальной длины для конкретных значений M , k и b .

Теорема. Линейная конгруэнтная последовательность, определенная числами M , k , b и r0 , имеет период длиной M тогда и только тогда, когда:

  • числа b и M взаимно простые;
  • k – 1 кратно p для каждого простого p , являющегося делителем M ;
  • k – 1 кратно 4, если M кратно 4.

Наконец, в заключение рассмотрим пару примеров использования линейного конгруэнтного метода для генерации случайных чисел.

Пример 1
M = 2 N
k = 3 + 8 · q (или k = 5 + 8 · q)
b = 0
r0 — нечетно

Было установлено, что ряд псевдослучайных чисел, генерируемых на основе данных из примера 1, будет повторяться через каждые M/4 чисел. Число q задается произвольно перед началом вычислений, однако при этом следует иметь в виду, что ряд производит впечатление случайного при больших k (а значит, и q ). Результат можно несколько улучшить, если b нечетно и k = 1 + 4 · q — в этом случае ряд будет повторяться через каждые M чисел. После долгих поисков k исследователи остановились на значениях 69069 и 71365 .

Пример 2
M = 2 31 – 1
k = 1 220 703 125
b = 7
r0 = 7

Генератор случайных чисел, использующий данные из примера 2, будет выдавать случайные неповторяющиеся числа с периодом, равным 7 миллионам.

Мультипликативный метод генерации псевдослучайных чисел был предложен Д. Г. Лехмером (D. H. Lehmer) в 1949 году.

Проверка качества работы генератора

От качества работы ГСЧ зависит качество работы всей системы и точность результатов. Поэтому случайная последовательность, порождаемая ГСЧ, должна удовлетворять целому ряду критериев.

Осуществляемые проверки бывают двух типов:

  • проверки на равномерность распределения;
  • проверки на статистическую независимость.

Проверки на равномерность распределения

1) ГСЧ должен выдавать близкие к следующим значения статистических параметров, характерных для равномерного случайного закона:

— математическое ожидание;
— дисперсия;
— среднеквадратичное отклонение.

2) Частотный тест

Частотный тест позволяет выяснить, сколько чисел попало в интервал (mr – σr; mr + σr) , то есть (0.5 – 0.2887; 0.5 + 0.2887) или, в конечном итоге, (0.2113; 0.7887) . Так как 0.7887 – 0.2113 = 0.5774 , заключаем, что в хорошем ГСЧ в этот интервал должно попадать около 57.7% из всех выпавших случайных чисел (см. рис. 22.9 ).

Рис. 22.9. Частотная диаграмма идеального ГСЧ
в случае проверки его на частотный тест

Также необходимо учитывать, что количество чисел, попавших в интервал (0; 0.5) , должно быть примерно равно количеству чисел, попавших в интервал (0.5; 1) .

3) Проверка по критерию «хи-квадрат»

Критерий «хи-квадрат» ( χ 2 -критерий) — это один из самых известных статистических критериев; он является основным методом, используемым в сочетании с другими критериями. Критерий «хи-квадрат» был предложен в 1900 году Карлом Пирсоном. Его замечательная работа рассматривается как фундамент современной математической статистики.

Для нашего случая проверка по критерию «хи-квадрат» позволит узнать, насколько созданный нами реальный ГСЧ близок к эталону ГСЧ, то есть удовлетворяет ли он требованию равномерного распределения или нет.

Частотная диаграмма эталонного ГСЧ представлена на рис. 22.10 . Так как закон распределения эталонного ГСЧ равномерный, то (теоретическая) вероятность pi попадания чисел в i -ый интервал (всего этих интервалов k ) равна pi = 1/k . И, таким образом, в каждый из k интервалов попадет ровно по pi · N чисел ( N — общее количество сгенерированных чисел).

Рис. 22.10. Частотная диаграмма эталонного ГСЧ

Реальный ГСЧ будет выдавать числа, распределенные (причем, не обязательно равномерно!) по k интервалам и в каждый интервал попадет по ni чисел (в сумме n1 + n2 + + nk = N ). Как же нам определить, насколько испытываемый ГСЧ хорош и близок к эталонному? Вполне логично рассмотреть квадраты разностей между полученным количеством чисел ni и «эталонным» pi · N . Сложим их, и в результате получим:

Из этой формулы следует, что чем меньше разность в каждом из слагаемых (а значит, и чем меньше значение χ 2 эксп. ), тем сильнее закон распределения случайных чисел, генерируемых реальным ГСЧ, тяготеет к равномерному.

В предыдущем выражении каждому из слагаемых приписывается одинаковый вес (равный 1), что на самом деле может не соответствовать действительности; поэтому для статистики «хи-квадрат» необходимо провести нормировку каждого i -го слагаемого, поделив его на pi · N :

Наконец, запишем полученное выражение более компактно и упростим его:

Мы получили значение критерия «хи-квадрат» для экспериментальных данных.

В табл. 22.2 приведены теоретические значения «хи-квадрат» ( χ 2 теор. ), где ν = N – 1 — это число степеней свободы, p — это доверительная вероятность, задаваемая пользователем, который указывает, насколько ГСЧ должен удовлетворять требованиям равномерного распределения, или p — это вероятность того, что экспериментальное значение χ 2 эксп. будет меньше табулированного (теоретического) χ 2 теор. или равно ему.

Таблица 22.2.
Некоторые процентные точки χ 2 -распределения
p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%
ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
ν = 2 0.02010 0.1026 0.5754 1.386 2.773 5.991 9.210
ν = 3 0.1148 0.3518 1.213 2.366 4.108 7.815 11.34
ν = 4 0.2971 0.7107 1.923 3.357 5.385 9.488 13.28
ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09
ν = 6 0.8721 1.635 3.455 5.348 7.841 12.59 16.81
ν = 7 1.239 2.167 4.255 6.346 9.037 14.07 18.48
ν = 8 1.646 2.733 5.071 7.344 10.22 15.51 20.09
ν = 9 2.088 3.325 5.899 8.343 11.39 16.92 21.67
ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21
ν = 11 3.053 4.575 7.584 10.34 13.70 19.68 24.72
ν = 12 3.571 5.226 8.438 11.34 14.85 21.03 26.22
ν = 15 5.229 7.261 11.04 14.34 18.25 25.00 30.58
ν = 20 8.260 10.85 15.45 19.34 23.83 31.41 37.57
ν = 30 14.95 18.49 24.48 29.34 34.80 43.77 50.89
ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15
ν > 30 ν + sqrt(2ν) · xp + 2/3 · x 2 p – 2/3 + O(1/sqrt(ν))
xp = –2.33 –1.64 –0.674 0.00 0.674 1.64 2.33

Приемлемым считают p от 10% до 90%.

Если χ 2 эксп. много больше χ 2 теор. (то есть p — велико), то генератор не удовлетворяет требованию равномерного распределения, так как наблюдаемые значения ni слишком далеко уходят от теоретических pi · N и не могут рассматриваться как случайные. Другими словами, устанавливается такой большой доверительный интервал, что ограничения на числа становятся очень нежесткими, требования к числам — слабыми. При этом будет наблюдаться очень большая абсолютная погрешность.

Еще Д. Кнут в своей книге «Искусство программирования» заметил, что иметь χ 2 эксп. маленьким тоже, в общем-то, нехорошо, хотя это и кажется, на первый взгляд, замечательно с точки зрения равномерности. Действительно, возьмите ряд чисел 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, — они идеальны с точки зрения равномерности, и χ 2 эксп. будет практически нулевым, но вряд ли вы их признаете случайными.

Если χ 2 эксп. много меньше χ 2 теор. (то есть p — мало), то генератор не удовлетворяет требованию случайного равномерного распределения, так как наблюдаемые значения ni слишком близки к теоретическим pi · N и не могут рассматриваться как случайные.

А вот если χ 2 эксп. лежит в некотором диапазоне, между двумя значениями χ 2 теор. , которые соответствуют, например, p = 25% и p = 50%, то можно считать, что значения случайных чисел, порождаемые датчиком, вполне являются случайными.

При этом дополнительно надо иметь в виду, что все значения pi · N должны быть достаточно большими, например больше 5 (выяснено эмпирическим путем). Только тогда (при достаточно большой статистической выборке) условия проведения эксперимента можно считать удовлетворительными.

Итак, процедура проверки имеет следующий вид.

  1. Диапазон от 0 до 1 разбивается на k равных интервалов.
  2. Запускается ГСЧ N раз ( N должно быть велико, например, N/k > 5 ).
  3. Определяется количество случайных чисел, попавших в каждый интервал: ni , i = 1, , k .
  4. Вычисляется экспериментальное значение χ 2 эксп. по следующей формуле:

где pi = 1/k — теоретическая вероятность попадания чисел в k -ый интервал.

Путем сравнения экспериментально полученного значения χ 2 эксп. с теоретическим χ 2 теор. (из табл. 22.2) делается вывод о пригодности генератора для использования. Для этого: а) входим в табл. 22.2 (строка = количество экспериментов – 1); б) сравниваем вычисленное χ 2 эксп. с χ 2 теор. , встречающимися в строке. При этом возможно три случая.

Первый случай: χ 2 эксп. много больше любого χ 2 теор. в строке — гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком велик, чтобы быть случайным).

Второй случай: χ 2 эксп. много меньше любого χ 2 теор. в строке — гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком мал, чтобы быть случайным).

Третий случай: χ 2 эксп. лежит между значениями χ 2 теор. двух рядом стоящих столбцов — гипотеза о случайности равномерного генератора выполняется с вероятностью p (то есть в p случаях из 100).

Заметим, что чем ближе получается p к значению 50%, тем лучше.

Проверки на статистическую независимость

1) Проверка на частоту появления цифры в последовательности

Рассмотрим пример. Случайное число 0.2463389991 состоит из цифр 2463389991, а число 0.5467766618 состоит из цифр 5467766618. Соединяя последовательности цифр, имеем: 24633899915467766618.

Понятно, что теоретическая вероятность pi выпадения i -ой цифры (от 0 до 9) равна 0.1.

Далее следует вычислить частоту появления каждой цифры в выпавшей экспериментальной последовательности. Например, цифра 1 выпала 2 раза из 20, а цифра 6 выпала 5 раз из 20.

Далее считают оценку и принимают решение по критерию «хи-квадрат».

2) Проверка появления серий из одинаковых цифр

Обозначим через nL число серий одинаковых подряд цифр длины L . Проверять надо все L от 1 до m , где m — это заданное пользователем число: максимально встречающееся число одинаковых цифр в серии.

В примере «24633899915467766618» обнаружены 2 серии длиной в 2 (33 и 77), то есть n2 = 2 и 2 серии длиной в 3 (999 и 666), то есть n3 = 2 .

Вероятность появления серии длиной в L равна: pL = 9 · 10 –L (теоретическая). То есть вероятность появления серии длиной в один символ равна: p1 = 0.9 (теоретическая). Вероятность появления серии длиной в два символа равна: p2 = 0.09 (теоретическая). Вероятность появления серии длиной в три символа равна: p3 = 0.009 (теоретическая).

Например, вероятность появления серии длиной в один символ равна pL = 0.9 , так как всего может встретиться один символ из 10, а всего символов 9 (ноль не считается). А вероятность того, что подряд встретится два одинаковых символа «XX» равна 0.1 · 0.1 · 9, то есть вероятность 0.1 того, что в первой позиции появится символ «X», умножается на вероятность 0.1 того, что во второй позиции появится такой же символ «X» и умножается на количество таких комбинаций 9.

Частость появления серий подсчитывается по ранее разобранной нами формуле «хи-квадрат» с использованием значений pL .

Примечание: генератор может быть проверен многократно, однако проверки не обладают свойством полноты и не гарантируют, что генератор выдает случайные числа. Например, генератор, выдающий последовательность 12345678912345 , при проверках будет считаться идеальным, что, очевидно, не совсем так.

В заключение отметим, что третья глава книги Дональда Э. Кнута «Искусство программирования» (том 2) полностью посвящена изучению случайных чисел. В ней изучаются различные методы генерирования случайных чисел, статистические критерии случайности, а также преобразование равномерно распределенных случайных чисел в другие типы случайных величин. Изложению этого материала уделено более двухсот страниц.

Источник

Читайте также:  Гальванический способ цинкования это
Оцените статью
Разные способы