Аксиомы стереометрии способ задания плоскостей

Содержание
  1. Плоскость в пространстве – необходимые сведения
  2. Понятие плоскости и ее обозначения
  3. Как могут располагаться плоскость и точка друг относительно друга
  4. Варианты взаимного расположения прямой и плоскости
  5. Варианты расположения двух плоскостей друг относительно друга
  6. Как задать плоскость в пространстве
  7. Способы задания плоскости в пространстве
  8. Аксиомы стереометрии
  9. Описание презентации по отдельным слайдам:
  10. Охрана труда
  11. Библиотечно-библиографические и информационные знания в педагогическом процессе
  12. Охрана труда
  13. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  14. Общая информация
  15. Похожие материалы
  16. Перспектива
  17. Изделия из теста
  18. Янтарная комната
  19. Искусство вазописи
  20. Я нарисую красками Судьбу
  21. Русская народная вышивка
  22. Эстетическая деятельность
  23. О самураях
  24. Вам будут интересны эти курсы:
  25. Оставьте свой комментарий
  26. Безлимитный доступ к занятиям с онлайн-репетиторами
  27. Подарочные сертификаты

Плоскость в пространстве – необходимые сведения

Плоскость – это одна из наиболее важных фигур в планиметрии, поэтому нужно хорошо понимать, что она из себя представляет. В рамках этого материала мы сформулируем само понятие плоскости, покажем, как ее обозначают на письме, и введем необходимые обозначения. Затем мы рассмотрим это понятие в сравнении с точкой, прямой или другой плоскостью и разберем варианты их взаимного расположения. Все определения будут проиллюстрированы графически, а нужные аксиомы сформулированы отдельно. В последнем пункте мы укажем, как правильно задать плоскость в пространстве несколькими способами.

Понятие плоскости и ее обозначения

Плоскость представляет собой одну из простейших фигур в геометрии наравне с прямой и точкой. Ранее мы уже объясняли, что точка и прямая размещаются на плоскости. Если эту плоскость разместить в трехмерном пространстве, то мы получим точки и прямые в пространстве.

В жизни представление о том, что такое плоскость, нам могут дать такие объекты, как поверхность пола, стола или стены. Но нужно учитывать, что в жизни их размеры ограничены, а здесь понятие плоскости связано с бесконечностью.

Прямые и точки, размещенные в пространстве, мы будем обозначать аналогично размещенным на плоскости – с помощью строчных и прописных латинских букв ( B , A , d , q и др.) Если в условиях задачи у нас есть две точки, которые расположены на прямой, то можно выбрать такие обозначения, которые будут соответствовать друг другу, например, прямая D B и точки D и B .

Чтобы обозначить плоскость на письме, традиционно используются маленькие греческие буквы, например, α , γ или π .

Если нам нужно графическое отображение плоскости, то обычно для этого используется замкнутое пространство произвольной формы или параллелограмм.

Плоскость принято рассматривать вместе с прямыми, точками, другими плоскостями. Задачи с этим понятием обычно содержат некоторые варианты их расположения друг относительно друга. Рассмотрим отдельные случаи.

Как могут располагаться плоскость и точка друг относительно друга

Первый способ взаимного расположения заключается в том, что точка расположена на плоскости, т.е. принадлежит ей. Можно сформулировать аксиому:

В любой плоскости есть точки.

Такой вариант расположения также называется прохождением плоскости через точку. Чтобы обозначить это на письме, используется символ ∈ . Так, если нам нужно записать в буквенном виде, что через точку A проходит некая плоскость π , то мы пишем: A ∈ π .

Если некая плоскость задана в пространстве, то число точек, принадлежащих ей, является бесконечным. А какого минимального количества точек будет достаточно для определения плоскости? Ответом на этот вопрос будет следующая аксиома.

Через три точки, которые не расположены на одной прямой, проходит единственная плоскость.

Зная это правило, можно ввести новое обозначение плоскости. Вместо маленькой греческой буквы мы можем использовать названия точек, лежащих в ней, например, плоскость А В С .

Другой способ взаимного расположения точки и плоскости можно выразить с помощью третьей аксиомы:

Можно выделить как минимум 4 точки, которые не будут находиться в одной плоскости.

Выше мы уже отмечали, что для обозначения плоскости в пространстве будет достаточно трех точек, а четвертая может находиться как в ней, так и вне ее. Если нужно обозначить отсутствие принадлежности точки к заданной плоскости на письме, то используется знак ∉ . Запись вида A ∉ π правильно читается как «точка A не принадлежит плоскости π »

Графически последнюю аксиому можно представить так:

Варианты взаимного расположения прямой и плоскости

Самый простой вариант – прямая находится в плоскости. Тогда в ней будут расположены как минимум две точки этой прямой. Сформулируем аксиому:

Если хотя бы две точки заданной прямой находятся в некоторой плоскости, это значит, что все точки этой прямой расположены в данной плоскости.

Чтобы записать принадлежность прямой некой плоскости, используем тот же символ, что и для точки. Если мы напишем « a ∈ π », то это будет означать, что у нас есть прямая a , которая расположена в плоскости π . Изобразим это на рисунке:

Читайте также:  Способ дыхания плоских червей

Второй вариант взаимного расположения – это когда прямая пересекает плоскость. В таком случае у них будет всего одна общая точка – точка пересечения. Для записи такого расположения в буквенном виде используем символ ∩ . Например, выражение a ∩ π = M читается как «прямая a пересекает плоскость π в некоторой точке M ». Если у нас есть точка пересечения, значит, у нас есть и угол, под которым прямая пересекает плоскость.

Графически этот вариант расположения выглядит так:

Если у нас есть две прямые, одна из которых лежит в плоскости, а другая ее пересекает, то они являются перпендикулярными друг другу. На письме это обозначается символом ⊥ . Особенности такой позиции мы рассмотрим в отдельной статье. На рисунке это расположение будет выглядеть следующим образом:

Если мы решаем задачу, в которой есть плоскость, нам необходимо знать, что из себя представляет нормальный вектор плоскости.

Нормальный вектор плоскости – это такой вектор, который лежит на перпендикулярной прямой по отношению к плоскости и не равен при этом нулю.

Примеры нормальных векторов плоскости показаны на рисунке:

Третий случай взаимного расположения прямой и плоскости – это их параллельность. В таком случае ни одной общей точки у них нет. Для указания таких отношений на письме используется символ ∥ . Если у нас есть запись вида a ∥ π , то ее следует читать так: «прямая a является параллельной плоскости ∥ ». Подробнее этот случай мы разберем в статье про параллельные плоскости и прямые.

Если прямая расположена внутри плоскости, то она делит ее на две равные или неравные части (полуплоскости). Тогда такая прямая будет называться границей полуплоскостей.

Любые 2 точки, расположенные в одной полуплоскости, лежат по одной сторону от границы, а две точки, принадлежащие разным полуплоскостям, лежат по разную сторону от границы.

Варианты расположения двух плоскостей друг относительно друга

1. Наиболее простой вариант – две плоскости совпадают друг с другом. Тогда они будут иметь минимум три общие точки.

2. Одна плоскость может пересекать другую. При этом образуется прямая. Выведем аксиому:

Если две плоскости пересекаются, то между ними образуется общая прямая, на которой лежат все возможные точки пересечения.

На графике это будет выглядеть так:

В таком случае между плоскостями образуется угол. Если он будет равен 90 градусам, то плоскости будут перпендикулярны друг другу.

3. Две плоскости могут быть параллельными друг другу, то есть не иметь ни одной точки пересечения.

Если у нас есть не две, а три и больше пересекающихся плоскостей, то такую комбинацию принято называть пучком или связкой плоскостей. Подробнее об этом мы напишем в отдельном материале.

Как задать плоскость в пространстве

В этом пункте мы посмотрим, какие существуют способы задания плоскости в пространстве.

1. Первый способ основан на одной из аксиом: единственная плоскость проходит через 3 точки, не лежащие на одной прямой. Следовательно, мы можем задать плоскость, просто указав три таких точки.

Если у нас есть прямоугольная система координат в трехмерном пространстве, в которой задана плоскость с помощью этого способа, то мы можем составить уравнение этой плоскости (подробнее см, соответствующую статью). Изобразим данный способ на рисунке:

2. Второй способ – задание плоскости с помощью прямой и точки, не лежащей на этой прямой. Это следует из аксиомы о плоскости, проходящей через 3 точки. См. рисунок:

3. Третий способ заключается в задании плоскости, которая проходит через две пересекающиеся прямые (как мы помним, в таком случае тоже есть только одна плоскость.) Проиллюстрируем способ так:

4. Четвертый способ основан на параллельных прямых. Вспомним, какие прямые называются параллельными: они должны лежать в одной плоскости и не иметь ни одной точки пересечения. Получается, что если мы укажем в пространстве две такие прямые, то мы тем самым сможем определить для них ту самую единственную плоскость. Если у нас есть прямоугольная система координат в пространстве, в которой уже задана плоскость этим способом, то мы можем вывести уравнение такой плоскости.

На рисунке этот способ будет выглядеть так:

Если мы вспомним, что такое признак параллельности, то сможем вывести еще один способ задания плоскости:

Если у нас есть две пересекающиеся прямые, которые лежат в некоторой плоскости, которые параллельны двум прямым в другой плоскости, то и сами эти плоскости будут параллельны.

Читайте также:  Особливості способу життя коня

Таким образом, если мы зададим точку, то мы сможем задать плоскость, которая проходит через нее, и ту плоскость, которой она будет параллельна. В таком случае мы тоже можем вывести уравнение плоскости (об этом у нас есть отдельный материал).

Вспомним одну теорему, изученную в рамках курса по геометрии:

Через определенную точку пространства может проходить только одна плоскость, которая будет параллельна заданной прямой.

Это значит, что можно задать плоскость путем указания конкретной точки, через которую она будет проходить, и прямой, которая будет перпендикулярна по отношению к ней. Если плоскость задана этим способом в прямоугольной системе координат, то мы можем составить уравнение плоскости для нее.

Также мы можем указать не прямую, а нормальный вектор плоскости. Тогда можно будет сформулировать общее уравнение.

Мы рассмотрели основные способы, с помощью которых можно задать плоскость в пространстве.

Источник

Способы задания плоскости в пространстве

Все возможные способы задания плоскости в пространстве представлены в следующей таблице.

Аксиома о плоскости, заданной тремя точками.

Через три различные точки в пространстве проходит одна и только одна плоскость.

Теорема о плоскости, определяемой прямой и точкой.

Через прямую и точку, не лежащую на этой прямой, проходит одна и только одна плоскость.

Теорема о плоскости, определяемой двумя пересекающимися прямыми.

Через две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.

Теорема о плоскости, определяемой двумя параллельными прямыми.

Через две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.

Аксиома о плоскости, заданной тремя точками.

Через три различные точки в пространстве проходит одна и только одна плоскость.

Теорема о плоскости, определяемой прямой и точкой.

Через прямую и точку, не лежащую на этой прямой, проходит одна и только одна плоскость.

Теорема о плоскости, определяемой двумя пересекающимися прямыми.

Через две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.

Теорема о плоскости, определяемой двумя параллельными прямыми.

Через две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.

Утверждение . Через любую прямую в пространстве проходит бесконечно много плоскостей (рис.5).

Замечание . Через любые две скрещивающиеся прямые скрещивающиеся прямые не проходит ни одной плоскости.

Источник

Аксиомы стереометрии

Описание презентации по отдельным слайдам:

Описание слайда:

Аксиомы
стереометрии.
Некоторые
следствия
из аксиом.
МОУ СОШ № 256
г. Фокино

Описание слайда:

Геометрия
Планиметрия
Стереометрия
stereos
телесный, твердый, объемный, пространственный

Описание слайда:

Стереометрия.
Раздел геометрии, в котором
изучаются свойства фигур
в пространстве.
Основные фигуры в пространстве:
А
Точка.
а
Прямая.
Плоскость.

Описание слайда:
Описание слайда:
Описание слайда:

Геометрические понятия.
Плоскость – грань
Прямая – ребро
Точка – вершина
вершина
грань
ребро

Описание слайда:

Аксиома
(от греч. axíõma – принятие положения)

исходное положение научной теории, принимаемое без доказательства

Описание слайда:

АКСИОМЫ
планиметрия
стереометрия
1. Каждой прямой принадлежат по крайней мере две точки
2. Имеются по крайней мере три точки, не лежащие на одной прямой
3. Через любые две точки проходит прямая, и притом только одна.
Характеризуют взаимное расположение точек и прямых
Основное понятие геометрии «лежать между»
4. Из трех точек прямой одна и только одна лежит между двумя другими.
А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна
А2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости
А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Описание слайда:

А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Описание слайда:

Аксиомы стереометрии описывают:
А1.
А2.
А3.
А
В
С
b

Способ задания плоскости.
b
А
В
Взаимное расположение прямой и плоскости
a

b
Взаимное расположение плоскостей

Описание слайда:

Способы задания плоскости
g
1. Плоскость можно провести через три точки.
g
2. Можно провести через прямую и не лежащую на ней точку.
Аксиома 1
Теорема 1
g
Теорема 2
3. Можно провести через две пересекающиеся прямые.
А1

Описание слайда:

Взаимное расположение прямой и плоскости.
Прямая лежит в плоскости.
Прямая пересекает плоскость.
Прямая не пересекает плоскость.
Множество общих точек.
Единственная общая точка.
Нет общих точек.
g

Описание слайда:

Следствия из аксиом стереометрии.
Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.
Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:

Пользуясь данным рисунком, назовите:

а) четыре точки, лежащие в плоскости SAB, в плоскости АВС;
б) плоскость, в которой лежит прямая MN, прямая КМ;
в) прямую, по которой пересекаются плоскости ASC и SBC , плоскости SAC и CAB.
К
А
В
М
S
N
C

Описание слайда:

Пользуясь данным рисунком, назовите:

а) две плоскости, содержащие прямую DE , прямую EF
б) прямую, по которой пересекаются плоскости
DEF и SBC; плоскости FDE и SAC ;
в) две плоскости, которые пересекает прямая SB; прямая AC .
А
С
В
S
D
F
E

Описание слайда:

Пользуясь данным рисунком, назовите:

а) три плоскости, содержащие прямую В1С; прямую АВ1;
C1
C
A1
B1
D1
A
B
D

Описание слайда:
Описание слайда:
Описание слайда:

Пользуясь данным рисунком, назовите:

а) три плоскости, содержащие прямую В1С; прямую АВ1;
б) прямую, по которой пересекаются плоскости
B1CD и AA1D1 ; плоскости ADC1 и A1B1B ;
C1
C
A1
B1
D1
A
B
D

Описание слайда:
Описание слайда:

Пользуясь данным рисунком, назовите:

а) три плоскости, содержащие прямую В1С; прямую АВ1;
б) прямую, по которой пересекаются плоскости
B1CD и AA1D1 ; плоскости ADC1 и A1B1B ;
в) плоскость, не пересекающуюся с прямой CD1 ; с прямой BC1
C
C1
A1
B1
D1
A
B
D

Описание слайда:
Описание слайда:

Пользуясь данным рисунком, назовите:

а) три плоскости, содержащие прямую В1С; прямую АВ1;
б) прямую, по которой пересекаются плоскости
B1CD и AA1D1 ; плоскости ADC1 и A1B1B ;
в) плоскость, не пересекающуюся с прямой CD1 ; с прямой BC1
C
C1
A1
B1
D1
A
B
D

Описание слайда:

Закрепление изученного
материала.
№ 1;
№ 2 (б,д);

Описание слайда:

Домашнее
задание:
Выучить аксиомы
и следствия из них.
Задания 4 – 12 в
рабочей тетради.
2) П. 1-3
стр. 4 – 7.
3) №№ 4; 6; 10.
Успехов!

Описание слайда:

Комментарий:
№ 6.
А
В
С
1 случай: точки лежат
на одной прямой.
А
В
С
2 случай: точки лежат
в одной плоскости

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Курс повышения квалификации

Охрана труда

  • Сейчас обучается 97 человек из 44 регионов

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 336 человек из 66 регионов

Курс профессиональной переподготовки

Охрана труда

  • Сейчас обучается 172 человека из 48 регионов

Ищем педагогов в команду «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Международная дистанционная олимпиада Осень 2021

Похожие материалы

Перспектива

Изделия из теста

Янтарная комната

Искусство вазописи

Я нарисую красками Судьбу

Русская народная вышивка

Эстетическая деятельность

О самураях

Не нашли то что искали?

Воспользуйтесь поиском по нашей базе из
5309647 материалов.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

Российский совет олимпиад школьников намерен усилить требования к олимпиадам

Время чтения: 2 минуты

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

Правительство предложило потратить до 1 млрд рублей на установку флагов РФ у школ

Время чтения: 1 минута

Спортивные и творческие кружки должны появиться в каждой школе до 2024 года

Время чтения: 1 минута

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Читайте также:  Брюссельская капуста способы выращивания
Оцените статью
Разные способы
Фигура Рисунок Тип утверждения и формулировка
Три различные точки
Прямая линия и точка, не лежащая на этой прямой
Две пересекающиеся прямые
Две параллельные прямые
Прямая линия и точка, не лежащая на этой прямой