Особенности аксиоматического метода, этапы, примеры
аксиоматический метод или также называемый Аксиоматика — это формальная процедура, используемая науками, посредством которой формулируются утверждения или суждения, называемые аксиомами, связанные друг с другом отношением выводимости и которые являются основой гипотезы или условий определенной системы..
Это общее определение должно быть включено в эволюцию, которую эта методология имела на протяжении всей истории. Во-первых, существует древний метод или содержание, родившееся в Древней Греции от Евклида и позднее разработанное Аристотелем..
Во-вторых, уже в девятнадцатом веке появление геометрии с аксиомами отличалось от аксиом Евклида. И, наконец, формальный или современный аксиоматический метод, максимальным показателем которого был Дэвид Гильберт.
Помимо развития с течением времени, эта процедура была основой дедуктивного метода, используемого в геометрии и логике, где она возникла. Это также использовалось в физике, химии и биологии.
И это даже применимо к юридической науке, социологии и политической экономии. Однако в настоящее время наиболее важной областью его применения является математика и символическая логика, а также некоторые отрасли физики, такие как термодинамика, механика и другие дисциплины..
- 1 Характеристики
- 1.1 Старый аксиоматический метод или содержание
- 1.2 Неевклидов аксиоматический метод
- 1.3 Современный или формальный аксиоматический метод
- 2 шага
- 3 примера
- 4 Ссылки
черты
Хотя фундаментальной характеристикой этого метода является формулировка аксиом, они не всегда рассматривались одинаково.
Есть некоторые, которые могут быть определены и построены произвольным образом. И другие, в соответствии с моделью, в которой рассматривается ее интуитивно гарантированная правда.
Чтобы понять, в чем конкретно состоит это различие и каковы его последствия, необходимо рассмотреть эволюцию этого метода..
Старый аксиоматический метод или содержание
Это тот, который был основан в Древней Греции в 5 веке до нашей эры. Сфера его применения — геометрия. Фундаментальная работа этого этапа — «Элементы Евклида», хотя считается, что до него Пифагор уже породил аксиоматический метод..
Таким образом, греки принимают определенные факты за аксиомы, не требуя каких-либо логических доказательств, то есть без необходимости демонстрации, поскольку для них они являются очевидной истиной.
Евклид, в свою очередь, представляет пять аксиом по геометрии:
1-Учитывая две точки есть линия, которая содержит или связывает их.
2-Любой сегмент может продолжаться непрерывно по неограниченной линии с обеих сторон..
3-Вы можете нарисовать круг, который имеет центр в любой точке и любом радиусе.
4-прямые углы одинаковы.
5. Принимая любую прямую линию и любую точку, которая не находится в ней, есть прямая линия, параллельная этому, и которая содержит эту точку. Эта аксиома известна позже как аксиома параллелей и была сформулирована также как: точкой вне линии можно провести одну параллель.
Тем не менее, как Евклид, так и более поздние математики сходятся во мнении, что пятая аксиома не так понятна, как другая 4. Даже во времена Ренессанса пытается вывести пятую из остальных 4, но это невозможно.
Это сделало то, что уже в девятнадцатом веке те, кто поддерживал пятерых, были сторонниками евклидовой геометрии, а те, кто отрицал пятую, были теми, кто создал неевклидовы геометрии.
Неевклидов аксиоматический метод
Именно Николай Иванович Лобачевский, Янош Боляй и Иоганн Карл Фридрих Гаусс видят возможность построения, без противоречия, геометрии, которая исходит из систем аксиом, отличных от систем аксиом Евклида. Это разрушает веру в абсолютную или априорную истинность аксиом и теорий, которые вытекают из них.
Следовательно, аксиомы начинают восприниматься как отправные точки данной теории. Также и их выбор, и проблема их обоснованности, так или иначе, начинают касаться фактов, выходящих за рамки аксиоматической теории..
Таким образом появляются геометрические, алгебраические и арифметические теории, построенные с помощью аксиоматического метода..
Эта стадия завершается созданием аксиоматических систем для арифметики, таких как система Джузеппе Пеано в 1891 году; геометрия Дэвида Хьюберта в 1899 году; заявления и предикатные расчеты Альфреда Норта Уайтхеда и Бертрана Рассела в Англии в 1910 году; Аксиоматическая теория множеств Эрнста Фридриха Фердинанда Цермело в 1908 г..
Современный или формальный аксиоматический метод
Именно Дэвид Хьюберт инициирует концепцию формального аксиоматического метода, и это приводит к его кульминации, Дэвид Хилберт.
Именно Гильберт формализует научный язык, рассматривая его утверждения как формулы или последовательности знаков, которые сами по себе не имеют никакого значения. Они приобретают смысл только в определенной интерпретации..
ВОсновы геометрии«Объясняет первый пример этой методологии. Отсюда геометрия становится наукой о чисто логических последствиях, которые извлекаются из системы гипотез или аксиом, лучше сформулированных, чем евклидова система..
Это потому, что в старой системе аксиоматическая теория основана на доказательстве аксиом. В то время как основа формальной теории дана демонстрацией непротиворечивости ее аксиом.
меры
Процедура, которая выполняет аксиоматическое структурирование в рамках научных теорий, признает:
a — выбор определенного количества аксиом, то есть ряда предложений определенной теории, которые принимаются без необходимости демонстрации.
б-понятия, входящие в эти суждения, не определены в рамках данной теории.
c-правила определения и вывода данной теории фиксированы и позволяют вводить новые понятия в рамках теории и логически выводить некоторые положения из других.
г — другие положения теории, т. е. теорема, выводятся из а на основе с.
примеров
Этот метод может быть проверен посредством демонстрации двух наиболее известных теорем Евклида: теоремы о ножке и теоремы о высоте..
И то и другое вытекает из наблюдения этого греческого геометра о том, что при построении высоты относительно гипотенузы внутри прямоугольного треугольника два треугольника оказываются больше оригинала. Эти треугольники похожи друг на друга и в то же время похожи на треугольник происхождения. Это предполагает, что их соответствующие гомологичные стороны пропорциональны.
Можно видеть, что конгруэнтные углы в треугольниках таким образом подтверждают сходство, которое существует между тремя задействованными треугольниками согласно критерию подобия AAA. Этот критерий гласит, что когда два треугольника имеют все равные углы, они похожи.
Как только треугольники показаны подобными, пропорции, определенные в первой теореме, могут быть установлены. В нем утверждается, что в правом треугольнике измерение каждого катета представляет собой среднее геометрическое пропорциональное между гипотенузой и проекцией катета в нем..
Вторая теорема — это теорема о высоте. Он указывает, что любой прямоугольный треугольник, высота которого нарисована в соответствии с гипотенузой, является геометрическим пропорциональным средним между сегментами, которые определяются указанным геометрическим средним на гипотенузе..
Конечно, обе теоремы имеют множество применений во всем мире не только в области образования, но и в технике, физике, химии и астрономии..
Источник
Аксиомы — Аксиоматический метод исследования
Специфическим методом построения развитой теории является аксиоматический метод. Впервые он был применен в математике при построении геометрии Евклида, а затем, в ходе исторического развития знаний, стал применяться и в эмпирических науках. Однако здесь аксиоматический метод выступает в особой форме гипотетико-дедуктивного метода построения теории. Рассмотрим, в чем состоит сущность каждого из названных методов.
При аксиоматическом построении теоретического знания сначала задается набор исходных положений, нe требующих доказательства (по крайней мере, в рамках данной системы знания). Эти положения называются аксиомами, или постулатами. Затем из них по определенным правилам строится система выводных предложений. Совокупность исходных аксиом и выведенных на их основе предложений образует аксиоматически построенную теорию.
Аксиомы — это утверждения, доказательства истинности которых не требуется. Логический вывод позволяет переносить истинность аксиом на выводимые из них следствия. Следование определенным, четко зафиксированным правилам вывода позволяет упорядочить процесс рассуждения при развертывании аксиоматической системы, сделать это рассуждение более строгим и корректным.
Аксиоматический метод развивался по мере развития науки. «Начала» Евклида были первой стадией его применения, которая получила название содержательной аксиоматики. Аксиомы вводились здесь на основе уже имеющегося опыта и выбирались как интуитивно очевидные положения. Правила вывода в этой системе также рассматривались как интуитивно очевидные и специально не фиксировались. Все это накладывало определенные ограничения на содержательную аксиоматику.
Эти ограничения содержательно-аксиоматического подхода были преодолены последующим развитием аксиоматического метода, когда был совершен переход от содержательной к формальной и затем к формализованной аксиоматике.
При формальном построении аксиоматической системы уже не ставится требование выбирать только интуитивно очевидные аксиомы, для которых заранее задана область характеризуемых ими объектов. Аксиомы вводятся формально, как описание некоторой системы отношений (не связанных жестко только с одним конкретным видом объектов); термины, фигурирующие в аксиомах, первоначально определяются только через их отношение друг к другу. Тем самым аксиомы в формальной системе рассматриваются как своеобразные определения исходных понятий (терминов). Другого, независимого, определения указанные понятия первоначально не имеют.
Дальнейшее развитие аксиоматического метода привело к третьей стадии — построению формализованных аксиоматических систем.
Формальное рассмотрение аксиом дополняется на этой стадии использованием математической логики как средства, обеспечивающего строгое выведение из них следствий. В результате аксиоматическая система начинает строиться как особый формализованный язык (исчисление). Вводятся исходные знаки — термины, затем указываются правила их соединения в формулы, задается перечень исходных принимаемых без доказательства формул, и, наконец, правила вывода из основных формул производных. Так создается абстрактная знаковая модель, которая затем интерпретируется на самых различных системах объектов.
Построение формализованных аксиоматических систем привело к большим успехам прежде всего в математике и даже породило представление о возможности ее развития чисто формальными средствами. Однако вскоре обнаружилась ограниченность таких представлений. В частности, К. Гёделем в 1931 году была доказана теорема о принципиальной неполноте достаточно развитых формальных систем. Гедель показал, что невозможно построить такую формальную систему, множество выводимых (доказуемых) формул которой охватило бы множество всех содержательно истинных утверждений теории, для формализации которой строится эта формальная система.
Другое важное следствие теоремы Геделя состоит в том, что невозможно решить вопрос о непротиворечивости таких систем их же собственными средствами. Теорема Геделя, а также ряд других исследований но обоснованию математики показали, что аксиоматический метод имеет границы своей применимости. Нельзя, например, всю математику представить как единую аксиоматически построенную систему, хотя это не исключает, конечно, успешной аксиоматизации ее отдельных разделов.
Источник
Метод аксиоматический
Наименование: | Аксиоматический метод (образовано от греческого слова: ἀξίωμα — значимое утверждение, принятое требование). |
Определение: | Аксиоматический метод — это метод развития, построения и систематизации научно-теоретического знания в форме так называемых аксиоматических теорий, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путём выводятся и доказываются остальные истинные утверждения (теоремы) данной теории. |
Раздел: | Концепты Концепты научного дискурса Концепты методологического дискурса |
Дискурс: | Методология Наука |
Субдискурс: | Методология науки Методы научного познания |
Связанные концепты: | Аксиома Метод гипотетико-дедуктивный Метод аксиоматико-дедуктивный Теория |
Текст статьи: © B. C. Стёпин. В. Л. Абушенко. Н. Н. Непейвода. Подготовка электронной публикации и общая редакция: Центр гуманитарных технологий. Ответственный редактор: А. В. Агеев . Информация на этой странице периодически обновляется. Последняя редакция: 13.11.2021. | |