- Немного об АЭС
- Принцип работы
- Выбросы
- Безопасность
- Атомная энергетика сегодня, типы реакторов и переход к экологически чистой энергии
- реклама
- реклама
- Как работает ядерная энергия?
- реклама
- реклама
- Современные типы реакторов
- Водо-водяной ядерный реактор (PWR)
- Кипящий водо-водяной реактор (BWR)
- Тяжеловодный ядерный реактор (CANDU)
- Улучшенный реактор с газовым охлаждением AGR
- Реактор большой мощности канальный
- Реакторы будущего
Немного об АЭС
Несмотря на то, что долгие годы не утихают споры вокруг атомных электростанций, большинство людей мало представляют себе, что это вообще за зверь, хотя наверняка знают какую-нибудь легенду про АЭС. В статье я попытаюсь в общих чертах рассказать, как это все работает. Каких-то тайн и разоблачений ждать не стоит, но, надеюсь, кто-нибудь узнает для себя что-то новенькое.
Все фотографии взяты из открытых источников. В статье будет описываются реакторы типа ВВЭР (водо-водяные энергетические реакторы), как самые распространенные.
Принцип работы
В активную зону реактора загружены тепловыделяющие сборки, состоящие из пучка циркониевых тепловыделяющих элементов (ТВЭЛов), заполненных таблетками двуокиси урана.
Тепловыделяющая сборка в натуральную величину
Ядра урана делятся с образованием нейтронов (2 или 3 нейтрона), которые, попадая в другие ядра, также могут вызывать их деление. Так возникает цепная ядерная реакция. При этом отношение числа образовавшихся нейтронов к числу нейтронов на предыдущем шаге деления называется коэффициентом размножения нейтронов k. Если k 1, реакция ускоряется, вплоть до ядерного взрыва. В ядерных реакторах поддерживается управляемая цепная ядерная реакция, удерживая k близкой к единице.
Реактор с загруженными тепловыделяющими сборками
В ходе протекания цепной реакции выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель первого контура — воду, которая подается снизу в активную зону реактора с помощью главных циркуляционных насосов (ГЦН). Нагреваясь до температуры 322 °С вода поступает в парогенератор (теплообменник), где, пройдя по тысячам теплообменных трубок и отдав часть тепла воде второго контура, вновь поступает в активную зону. Так как давление второго контура ниже, вода в парогенераторе вскипает, образуя пар с температурой 274°С, который поступает на турбину. Поступая в цилиндр высокого давления, а затем в три цилиндра низкого давления, пар раскручивает турбину, которая, в свою очередь, вращает генератор, вырабатывая электричество. Отработанный пар поступает в конденсатор, в котором он, как нетрудно догадаться, конденсируется с помощью холодной воды из пруда-охладителя или градирни и вновь возвращается в парогенератор с помощью питательных насосов.
Турбинное отделение и сама турбина
Такая сложная двухконтурная система создана для того, чтобы оградить оборудование (турбина, конденсатор), а также окружающую среду от попадания радиоактивных частиц из первого контура, появление которых возможно из-за коррозии оборудования, наведенной радиоактивности, а также разгерметизации оболочек ТВЭЛов.
Брызгальный бассейн охлаждения резервных дизельных генераторов и систем безопасности
Управление блоками осуществляется из блочного щита управления, который обычно завораживает простого обывателя обилием «огоньков, крутилок и кнопочек».
Расположен он в реакторном отделении, но в «чистой зоне» и на нем постоянно находятся: ведущий инженер по управлению реактором, ведущий инженер по управлению турбинами, ведущий инженер по управлению блоком и начальник смены блока.
Вокруг атомной станции организуется зона наблюдения (та самая тридцатикилометровая зона), в которой ведется постоянный мониторинг радиационной обстановки. Также существует санитарно-защитная зона радиусом 3 км (зависит от проектной мощности АЭС), в которой запрещено проживание людей, а также ограничена сельскохозяйственная деятельность.
Внутренняя территория АЭС разделена на две зоны: зона свободного доступа (чистая зона), где воздействие радиационных факторов на персонал практически исключено, и зону контролируемого доступа (ЗКД), где возможно воздействие радиации на персонал.
Доступ в ЗКД разрешен далеко не всем и возможен только через помещение санпропускника, после процедуры переодевания в спец. одежду и получения индивидуального дозиметра. Доступ в гермооболочку, в которой расположены сам реактор и оборудование первого контура, при работе реактора на мощности вообще запрещен и возможен лишь в исключительных случаях. Получаемые дозы работников АЭС строго фиксируются и нормируются, хотя фактическое облучение при нормальной работе реактора в сотни раз меньше предельных доз.
Дозиметрический контроль на выходе из ЗКД
Выбросы
Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы — это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы — ксенон, криптон и аргон.
Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.
Безопасность
Все системы атомной станции проектируются и работают с учетом многочисленных принципов безопасности. Например, концепция глубоко эшелонированной защиты подразумевает наличие нескольких барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду. Очень похоже на принцип Кащея Бессмертного: топливо сгруппировано в таблетки, которые находятся в циркониевых ТВЭЛах, которые помещены в стальной корпус реактора, который помещен в железобетонную гермооболочку. Таким образом, разрушение одного из барьеров компенсируется следующим. Делается все, чтобы при любой аварии радиоактивные вещества не вышли за пределы зоны контролируемого доступа.
Также, все системы имеют двух- и трехкратное резервирование, в соответствии с принципом единичного отказа, по которому система должна бесперебойно выполнять свои функции даже при отказе любого ее элемента. Вместе с этим применяется принцип разнообразия, то есть использования систем, имеющих разные принципы работы. Например, при срабатывании аварийной защиты в активную зону реактора падают стержни-поглотители и в теплоноситель первого контура дополнительно впрыскивается борная кислота.
Энергоблоки регулярно выводятся в планово-предупредительные ремонты (ППР), в периоды которых происходит перегрузка топлива, а также производится диагностика, ремонт и замена оборудования, модернизация оборудования. Один раз в четыре года работающий энергоблок выводится в капитальный ППР с полной выгрузкой ядерного топлива из активной зоны реактора, обследованием и испытанием внутрикорпусных устройств, а также испытания корпуса реактора на прочность.
На работу некоторых систем безопасности можно посмотреть на интерактивной презентации с сайта Росэнергоатома.
А можно виртуально побродить по Балаковской АЭС.
Источник
Атомная энергетика сегодня, типы реакторов и переход к экологически чистой энергии
Поскольку правительства стран всего мира признают настоятельную необходимость сокращения выбросов парниковых газов, ядерная энергия, похоже, будет занимать все более важное место в энергетическом балансе ближайших десятилетий. Но для многих людей то, что представляет собой технология ядерной энергии сегодня и чем она будет завтра, является чем-то лишь весьма туманным. Как же работают ядерные реакторы, и может ли атом снова стать «нашим другом»?
реклама
2 декабря 1942 года под футбольным стадионом Stagg Field Чикагского университета была активирована Чикаго Пайл-1 — Chicago Pile-1 (CP-1), ставшая первым в мире ядерным реактором. Сегодня, 78 лет спустя, 440 реакторов вырабатывают более 10 процентов мировой энергии, и еще 50 реакторов находятся в стадии строительства.
реклама
Наряду с такой важной ролью, ядерная энергия имеет плохую репутацию. Это объясняется рядом сложных факторов. Атомная энергия до сих пор остается для многих загадкой, она ассоциируется с радиоактивными отходами и ядерным оружием, она все еще находится под бременем десятилетий пропаганды холодной войны, а также трех чрезвычайно громких аварий реакторов в США, СССР и Японии.
В настоящее время строительство и разработка реакторов сильно замедлились в последние десятилетия 20-го века, но, возможно, эта отрасль находится на пороге возрождения. Несмотря на свою репутацию, ядерная энергия имеет ряд преимуществ. Она не только не содержит углерода и выбросов. Она производит огромное количество энергии при очень малой площади. Она может быть размещена в любом регионе. И, что удивительно, у нее самый низкий уровень смертности на киловатт среди всех источников энергии.
Как работает ядерная энергия?
Вся современная ядерная энергетика основана на принципе ядерного деления, когда тяжелый, нестабильный атом распадается на два небольших. Это происходит естественным образом везде, даже в молекулах нашего собственного тела, но в ядерном реакторе это расщепление атомов происходит в гораздо больших масштабах.
Типичный ядерный реактор состоит из активной зоны, состоящей из топливных стержней, которые содержат гранулы обогащенного урана или плутония. Обогащенный означает, что уран был обработан в центрифуге для увеличения соотношения расщепляющихся атомов урана-235 и нерасщепляющихся урана-238. Эти топливные стержни упаковываются вместе, чередуются с управляющими стержнями из кадмия или иных материалов и погружаются в воду внутри защитной оболочки.
реклама
Внутри активной зоны атомы урана расщепляются естественным образом. При этом часть мощной силы, связывающей атомы вместе, высвобождается в виде гамма-излучения, а также пары нейтронов. Пока нейтроны летят, вода действует как замедлитель. То есть она замедляет эти нейтроны, увеличивая вероятность того, что они будут взаимодействовать с другими атомами урана.
Если один из этих нейтронов поглощается атомом урана-235, этот атом становится нестабильным и расщепляется, высвобождая больше энергии и больше нейтронов. Этот каскад нейтронов и расщепляющихся атомов перерастает в цепную реакцию, в результате которой выделяется энергия, достаточная для питания города в течение десятилетий. Чтобы реакция не вышла из-под контроля и не расплавила активную зону, можно вставить управляющие стержни, поглощающие нейтроны и гасящие выход.
Все это включает в себя множество очень сложных физических моментов, но в результате получается «гигантский чайник», который нагревает воду. Эта горячая вода проходит через теплообменник и нагревает еще один контур воды для создания пара, который затем вращает турбину, которая приводит в действие генератор, вырабатывающий электричество.
реклама
По своей сути, ядерная энергия — это способ получения пара. Однако в настоящее время в эксплуатации находится ряд моделей реакторов, которые прошли через три технологических поколения — поколение I было первыми прототипами, поколение II — первыми промышленными реакторами, а поколение III — это, по сути, поколение II с более продвинутыми характеристиками. Четвертое и пятое поколения усовершенствованных реакторов только разрабатываются. Помимо этих энергетических реакторов, существуют и реакторы для специальных целей, такие как исследовательские реакторы и реакторы, предназначенные для производства оружейного плутония, а также реакторы для производства радиоактивных изотопов для широкого спектра применений, например, для медицины.
Современные типы реакторов
Вот краткая информация о том, как работают основные типы реакторов, используемых сегодня. Следует иметь в виду, что некоторые из этих основных конструкций были разработаны еще в 1950-х годах и на протяжении более 60 лет постоянно совершенствовались, чтобы сделать их более безопасными и эффективными.
Водо-водяной ядерный реактор (PWR)
Pressurized Water Reactor
Наиболее распространенным типом реактора является реактор с водой под давлением (PWR), который первоначально был разработан в США для питания атомных подводных лодок, а в настоящее время используется в более чем 20 странах. Это конструкция, описанная выше, в которой вода используется и как замедлитель, и как теплоноситель.
В современных конструкциях реакторов PWR топливо обогащается примерно до 3,2 процента урана-235 и формируется в таблетки весом около 10 граммов, которые запечатываются в стержни из циркониевого сплава. Контейнер из нержавеющей стали, окружающий реактор, предназначен как для герметизации всех ядерных продуктов, так и для использования в качестве сосуда под давлением, который поддерживает жидкую воду при более высокой температуре, как в скороварке, для большей эффективности. Контейнер, в свою очередь, закрыт стальным и бетонным щитом, чтобы удержать содержимое реактора даже в случае расплавления.
В старых конструкциях реакторов PWR вода с теплоносителем выходила из защитного экрана и использовалась для выработки электроэнергии. Чтобы поддерживать активную зону реактора холодной, вода должна была постоянно активно прокачиваться. Оба варианта создавали проблемы с безопасностью, как это было во время катастрофы на острове Три-Майл, поэтому в более поздних реакторах использовалась серия контуров теплообменников и резервные пассивные системы циркуляции воды для поддержания охлаждения активной зоны даже в случае полной остановки.
Кипящий водо-водяной реактор (BWR)
Boiling water reactor
Следующий по распространенности реактор, известный как реактор с кипящей водой (BWR), является более простым и практически менее безопасным, чем PWR. Как следует из названия, воде в контуре теплоносителя дают возможность закипеть, и пар поступает непосредственно в турбину из защитной оболочки, а после повторной конденсации возвращается в реактор. Это обеспечивает большую вероятность радиоактивного заражения.
Схема кипящего водо-водяного реактора
Существует 10 стран, использующих конструкцию BWR. Одна из них — Япония, и в катастрофе на Фукисиме в 2011 году участвовали шесть реакторов BWR, построенных в 1960-х и 70-х годах, которые уже считались устаревшими с точки зрения безопасности, когда цунами и землетрясение разрушили реакторный комплекс.
Тяжеловодный ядерный реактор (CANDU)
Heavy Water Reactor
Вариантом реактора с водяным охлаждением и замедлителем является реактор на тяжелой воде под высоким давлением или канадский дейтериевый уран (CANDU). Эта разработка использует необогащенный уран. Вместо обычной воды в реакторе используется тяжелая вода, в которой многие атомы водорода заменены на изотоп водорода, называемый дейтерием. У тяжелой воды меньше шансов поглотить нейтроны, поэтому требуется меньше обогащенного топлива. Кроме того, тяжелая вода создает собственные нейтроны, что делает ядерный реактор более медленным, стабильным и легко контролируемым.
Улучшенный реактор с газовым охлаждением AGR
Два самых ранних типа промышленных реакторов — Magnox и усовершенствованный газовый реактор (AGR). Они являются прямыми потомками первой атомной сваи в Чикаго в 1942 году и были построены в Великобритании с 1956 по 1971 год. Как и CP-1, они используют блоки графита в качестве замедлителя, хотя топливо, представляющее собой металлический уран или оксид урана, запаяно в контейнеры из магниевого сплава или нержавеющей стали, а не в стержни.
Для охлаждения в этих реакторах используется двуокись углерода. Поскольку прежний реактор Магнокс был предназначен в основном для производства плутония, он был не очень эффективен, поэтому был создан реактор AGR, который работает при более высокой температуре для лучшего производства пара и работы турбин.
Реактор большой мощности канальный
Реактор большой мощности канальный, РБМК был разработан в СССР примерно в то же время, что и Magnox, и имеет некоторые общие конструктивные особенности, хотя это совершенно другая машина. В РБМК используется очень мощная графитовая активная зона с водяным охлаждением, состоящая примерно из 1700 вертикальных каналов, содержащих оксид урана, обогащенный до 1,8 процента урана-235. Вода циркулирует под давлением и затем используется для выработки пара.
Хотя большое количество РБМК все еще работает в бывших странах СССР, их печально известная небезопасная конструкция была продемонстрирована Чернобыльской катастрофой в 1986 году, когда инженеры нарушили протоколы безопасности во время имитации испытания на отключение электроэнергии, в результате чего активная зона одного из реакторов комплекса была разорвана паром, после чего произошло возгорание графитового замедлителя.
Реакторы будущего
В настоящее время в мире наблюдается появление реакторов IV поколения, а за ними последует и V поколение. К ним относятся модульные реакторы, которые могут быть построены на заводах, а не на объекте; реакторы с галечным слоем, реакторы, охлаждаемые расплавленной солью или свинцом, и реакторы, использующие быстрые нейтроны для создания большего количества топлива, чем потребляется. Эти конструкции реакторов имеют общую цель — сделать атомные электростанции по своей сути более безопасными, дешевыми, эффективными, быстровозводимыми и производящими гораздо меньше ядерных отходов.
В 1950-х годах часто можно было услышать о наступлении атомного века, который принесет с собой всевозможные чудеса. Этого не произошло, но если ядерные технологии смогут продвинуться в разработке реакторов, обеспечении устойчивого источника топлива и удовлетворительном ответе на вопрос о ядерных отходах — с возможностью практической термоядерной энергии — то, возможно, в 21 веке появится менее идеалистическая версия того атомного века.
Источник