Анаэробное и аэробное дыхание
Процесс дыхания состоит из двух основных этапов. Первый, начальный, — анаэробное дыхание, в результате которого дыхательный субстрат (углеводы) распадается до простейших продуктов типа пировиноградной кислоты. Дальше превращение пировиноградной кислоты может проходить двумя путями: кислородным до конечных продуктов СО2 и Н2О или анаэробным по типу брожения. Таким образом, устанавливается определенная связь между дыханием и брожением. Учение о генетической связи между этими процессами было разработано С. П. Костычевым. Общую схему ставить в таком виде:
Л. Пастер первым доказал, что высшие растения не прекращают выделения углекислого газа и после того, как попадают в среду, лишенную кислорода. Но дыхание растений в этих условиях сопровождается накоплением в их тканях спирта. Дыхание за счет связанного кислорода называют также интрамолекулярным. Его можно представить уравнением $$\large \ce
При дыхании такого типа жизнь зеленого растения продолжается недолго — оно погибает. Очевидно, происходит отравление продуктами обмена, которые образуются в этом случае.
Низкий энергетический эффект брожения также имеет существенное значение. Спирт содержит большой запас энергии, которая не используется при интрамолекулярном дыхании. Установлено, что для получения того же количества энергии в анаэробных условиях ткани высшего растения должны вследствие низкого энергетического уровня этого процесса израсходовать в 30-50 раз больше пластических веществ, чем при аэробном дыхании. В результате анаэробного дыхания ткани истощаются — они лишаются различных промежуточных веществ, которые обычно образуются при кислородном дыхании.
Существует взгляд на интрамолекулярное дыхание (брожение) у высших растений как на рудиментарную функцию. Наряду с аэробным дыханием в тканях растений в той или иной мере всегда происходят и процессы брожения. В тканях растений, нормально снабжающихся кислородом, они обнаружены во многих случаях. Так, продукты спиртового брожения (уксусный альдегид, этиловый спирт) накапливаются в интенсивно растущих органах растений, в сочных тканях различных плодов — лимонов, яблок, мандаринов.
Брожение, и дыхание тесно связаны между собой. Об этом свидетельствует прежде всего тот факт, что в растении найдены те же промежуточные продукты, которые образуются в дрожжах при спиртовом брожении. Так, во многих растениях обнаружены глюкозо-6-фосфат, фруктозо-6-фосфат, фруктозо-1,6-дифосфат. Эти фосфорные эфиры сахаров оказались в листьях гороха, сахарной свеклы, овса, ячменя, в прорастающих семенах гороха. В листьях ячменя обнаружены фосфоглицериновая и пировиноградная кислоты, в луке — пировиноградная кислота, в некоторых плодах — уксусный альдегид. Все эти соединения являются промежуточными продуктами спиртового брожения. О единстве и теснейшей связи процессов брожения и дыхания свидетельствует также то, что в растениях выявлены ферменты, катализирующие спиртовое брожение.
При аэробном дыхании последним акцептором водорода является кислород, и поэтому конечным продуктом окисления оказывается вода. При анаэробном дыхании к последним акцепторам водорода относятся другие вещества, образующиеся в процессе брожения субстрата. В. И. Палладии еще в 1912 г. указывал, что при аэробном дыхании весь водород глюкозы окисляется до воды исключительно кислородом воздуха. Образование спирта при брожении возможно потому, что последним акцептором водорода в этом случае является альдегид.
Экспериментально доказано, что дегидрогеназы и их коферменты НАД и НАДФ, катализирующие отщепление водорода, от окисляемых органических веществ, играют важную роль в процессах тканевого дыхания и при разных видах анаэробных брожений (спиртовом, молочнокислом, маслянокислом и др.).
Восстановленная форма никотинамидадениндииуклеотидфосфата (НАДФН2) может отдавать водород таким его ацепторам, как пировиноградная кислота: $$\large \ce
В других случаях восстановленный НАДФ может отдавать свой водород ацетальдегиду: $$\large \ce
Таким образом, в зависимости от того, к какому акцептору будет присоединен с помощью дегидрогеназ водород, образуются и соответствующие продукты, определяющие тип брожения (молочнокислое, спиртовое и др.). Для взаимодействия между акцептором водорода и соответствующей кодегидразой необходимо присутствие в клетке соответствующего фермента. Следовательно, анаэробное окисление не является патологическим процессом для высших растений. Наряду с аэробным дыханием брожение, очевидно, — один из постоянных процессов окислительного газообмена в их тканях. В разных тканях при различных условиях участие брожения в дыхательном газообмене может значительно изменяться. Но при этом анаэробные процессы в зависимости от внутренних и внешних условий происходят, очевидно, всегда.
Химизм анаэробной фазы дыхания (гликолиз)
Начальный этап анаэробного распада углеводов заключается в образовании ряда фосфорных эфиров сахаров (гексоз). Важную роль фосфорной кислоты в процессе анаэробного дыхания впервые установили русские биохимики Л. А. Иванов и А. Н. Лебедев, которые экспериментально доказали образование в этом процессе соединений сахара с фосфорной кислотой. С помощью различных ингибиторов было выяснено, что анаэробному распаду при брожении подвергается не свободная молекула гексозы, а ее фосфорный эфир, который образовался из гексозы и фосфорной кислоты и является активным и лабильным соединением в отличие от химически инертной молекулы гексозы. Активация молекулы гексозы, повышение ее реакционной способности происходят постепенно и проходят ряд этапов.
На первом этапе брожения и дыхания молекула глюкозы под действием фермента гексокииазы принимает остаток фосфорной кислоты от АТФ, которая превращается в АДФ, и в результате образуется глюкопиранозо-6-фосфат, превращающийся под действием фермента фосфогексоизомеразы (оксоизомеразы) в фруктофуранозо-6-фосфат. На дальнейшем этапе гликолиза фрукто- фуранозо-6-фосфата к нему присоединяются еще один остаток фосфорной кислоты. Источником энергии для образования данного эфира является также молекула АТФ. Эту реакцию катализирует фосфогексокиназа, активируемая ионами магния. В результате образуются фруктофуранозо-1,6-дифосфат и новая молекула аденозиндифосфата:
Далее молекула фруктозо-1,6-дифосфата под влиянием фермента альдолазы расщепляется на две молекулы фосфотриоз: фосфодиоксиацетон и 3-фосфоглицериновый альдегид. Фоcфодиоксиацетон под действием фермента фосфотриозоизомеразы полностью превращается в 3-фосфоглицериновый альдегид.
Следующий этап гликолиза заключается в окислении 3-фосфоглицеринового альдегида специфической дегидрогеназой и фосфорилировании глицериновой кислоты с использованием минеральной фосфорной кислоты. Образовавшаяся в результате этой реакции 1,3-дифосфоглицериновая кислота передает при участии фермента фосфоферазы один остаток фосфорной кислоты молекуле АДФ, которая превращается в АТФ, при этом образуется 3-фосфоглицериновая кислота. Последняя под действием фермента фосфоглицеромутазы переходит в 2-фосфоглицериновую кислоту, которая под влиянием фермента енолазы превращается в фосфоенолпировиноградную кислоту и наконец в пировиноградную кислоту. Процесс преобразования 3-фосфоглицеринового альдегида в 1,3-дифосфоглицериновую кислоту осуществляется по схеме:
Процесс превращения 1,3-дифосфоглицернновой кислоты пировиноградную происходит по такой схеме:
На рисунке выше приведены общая схема реакций распада глюкозы до пировиноградной кислоты в анаэробной фазе дыхания и обратные реакции, в результате которых из пировиноградной кислоты синтезируется глюкоза. Ферменты гликолитического распада глюкозы легко экстрагируются из клеток, поэтому считают, что они локализуются в растворимой части цитоплазмы.
Образованием пировиноградной кислоты из фосфоенолпирувата заканчивается гликолитическое расщепление гексозы. На каждый моль использованной в этих реакциях гексозы расходуются два моля АТФ, тогда как в реакциях превращения двух молекул 1,3-дифосфоглицериновой кислоты и двух молекул фосфоенолпировиноградной кислоты синтезируются четыре молекулы АТФ, в результате остаются неиспользованными две молекулы АТФ. Кроме того, в ходе окисления гексозы до пирувата восстанавливаются две молекулы НАДН2 или НАДФН2 (в зависимости от растений); каждая из них, окисляясь, образует по три молекулы АТФ, а всего — шесть молекул АТФ. Таким образом, при гликолитическом распаде гексозы, который является начальным этапом анаэробного дыхания, происходит потребление двух молекул АТФ, регенерация АДФ и синтез четырех новых молекул аденозинтрифосфата. Пировиноградная кислота, образовавшаяся в результате описанных реакций в анаэробных условиях, подвергается превращениям, которые осуществляются при спиртовом или молочнокислом брожении.
Химизм аэробной фазы дыхания
В аэробных условиях пировиноградная кислота в растениях окисляется полностью до СО2 и Н2О. Это окисление, как установлено английским биохимиком Г. Кребсом, проходит последовательно с образованием ди- и трикарбоновых кислот, поэтому оно называется циклом ди- и трикарбоновых кислот, или лимоннокислым, или циклом Кребса, которым завершается окисление продуктов распада углеводов, жиров и белков. В результате, молекула пировиноградной кислоты полностью окисляется до. трех молекул углекислого газа и двух молекул воды:
CH3COCOOH+2½O2 → 3CO2+2H2O $$\large \ce
Установлено, что в процессе постепенного, окисления пировиноградной кислоты образуются различные промежуточные органические кислоты с четырьмя или шестью атомами углерода, встречающиеся в растениях.
Предложенная Г. Кребсом схема является дальнейшим развитием учения С. П. Костычева о генетической связи дыхания и брожения.
Рис. 41. Схема реакций анаэробного распада углеводов
Рис. 42. Цикл ди- и трикарбоновых кислот (цикл Кребса)
Таким образом, цикл Кребса заключается в образовании лимонной кислоты из щавелевоуксусной кислоты и ацетилкоэнзима А (ацетил-КоА) и регенерации щавелевоуксусной кислоты из лимонной.
Первая реакция в цикле — образование промежуточного продукта «активированной» уксусной кислоты в виде ацетил-КоА, который окончательно окисляется. Энергия, выделяющаяся в пяти реакциях окисления, фиксируется в виде макроэргических пирофосфатных связей аденозинтрифосфата. Это — следующие окислительно-восстановительные реакции: образование ацетил-коэнзима А; окисление лимонной и изолимонной кислот через цис-аконитовую до щавелевоянтарной кислоты, α-кетоглутаровой — до сукцинил-КоА, янтарной — до фумаровой, яблочной — до щавелевоуксусной, которая является основным соединением в цикле: она катализирует полный распад пировиноградной кислоты, после чего происходит регенерация щавелевоуксусной кислоты в циклическом процессе.
Таким образом, с каждым оборотом цикла исчезает одна молекула пировиноградной кислоты и от различных компонентов цикла отщепляется три молекулы СО2 и пять пар атомов водорода (электронов).
Органические кислоты, входящие в цикл, имеются в тканях почти всех растений. В растениях найдены также все важнейшие ферментные системы, участвующие в превращении этих органических кислот, а именно: аконитаза, дегидрогеназы изолимонной, яблочной и янтарной кислот, фумараза, карбоксилаза щавелевоянтарной кислоты. Все ферменты цикла трикарбоновых кислот сконцентрированы в матриксе митохондрий; здесь также обнаружены ферменты окисления жирных кислот и др. Считают, что основное назначение цикла. Кребса заключается в подготовке материала для синтетических процессов, происходящих во время роста молодых клеток. На такие процессы расходуются промежуточные продукты цикла: α-кетоглутаровая, фумаровая кислоты и др. Эти соединения могут быть исходными веществами для многочисленных реакций синтеза и обмена аминокислот, синтеза нуклеотидов, образования различных циклических соединений, жиров и других веществ.
Дополнительные материалы по теме:
Источник
Аэробный анаэробный способ дыхания
Мы все неоднократно слышали из самых разных источников, и большинство научных исследований указывают на то, что дыхание через нос является правильным и наиболее оптимальным способом дыхания.
Наш нос — это специальный орган, который являются частью дыхательной системы. Тот факт, что мы можем вдыхать и выдыхать воздух ртом, точно не делает нос лишним!
Знаете ли вы, что наш организм предназначен именно для дыхания через нос? Правильное и постоянное дыхание через нос имеет много преимуществ для нашего здоровья.
Во-первых, носовое дыхание помогает нам бороться с инфекциями.
Ноздри и пазухи фильтруют и нагревают воздух, поступающий в легкие. Также в пазухах носа образуется оксид азота, который в небольших дозах вреден для бактерий. Когда мы вдыхаем воздух через нос, он нагревается, увлажняется, кондиционируется и смешивается с оксидом азота, который выполняет две важные функции: убивает опасные бактерии и действует как сосудорасширяющее средство в дыхательных путях, артериях и капиллярах.
Во-вторых, носовое дыхание обеспечивает лучший кровоток в легких. Расширение сосудов оксидом азота увеличивает площадь поверхности альвеол, которые поглощают кислород, что означает, что кислород усваивается лучше, когда мы дышим через нос.
Носовое дыхание (в отличие от дыхания через рот) повышает циркуляцию крови, благотворно влияет на уровень кислорода и углекислого газа в крови, замедляет частоту дыхания и увеличивает общий объем легких.
В-третьих, носовое дыхание помогает поддерживать температуру тела.
Через нос обеспечивается выделение около 33% выдыхаемого тепла и влаги, таким образом, поддерживается нормальная температура тела.
В-четвертых, дыхание через нос помогает улучшить функции мозга. Гипоталамус отвечает за многие функции в нашем организме, особенно те, которые мы считаем автоматическими: сердцебиение, поддержание кровяного давления, чувство жажды и голода, циклы сна и бодрствования. Гипоталамус также отвечает за выработку химических веществ, которые влияют на память и эмоции. Увеличение воздушного потока через правую ноздрю коррелирует с повышенной активностью левого полушария мозга и улучшением вербальной функции, тогда как увеличение воздушного потока через левую ноздрю связано с повышенной активностью правого полушария мозга и улучшенными пространственными характеристиками.
Дыхание через нос ограничивает потребление воздуха и заставляет замедляться сердцебиение. Правильное дыхание через нос уменьшает артериальное давление и уровень стресса у большинства людей.
В-пятых, носовое дыхание помогает во время тренировок.
Легкие извлекают кислород из воздуха, которым мы дышим, прежде всего, на выдохе. Когда мы выдыхаем через ноздри, довольно маленькие по сравнению со ртом, создается обратное давление, что приводит к замедлению движения выдыхаемого воздуха и позволяет легким поглотить большего количества кислорода. Носовое дыхание создает примерно на 50 % больше сопротивления потоку воздуха у здоровых людей, чем дыхание через рот, что приводит к увеличению поглощения кислорода на 10-20 %.
При правильном обмене кислорода и углекислого газа наша кровь поддерживает сбалансированный уровень pH. Если углекислый газ выделяется из организма слишком быстро, как при дыхании через рот, поглощение легкими кислорода уменьшается. Если вы хотите улучшить свои показатели во время тренировок, вам следует исключить гипервентиляцию, то есть дыхание через рот.
Если вы дышите через рот, вы пропускаете много важных этапов в процессе дыхания, и это может привести к различным проблемам со здоровьем, например к храпу и апноэ во сне. Дыхание через нос помогает замедлить дыхательный цикл, чтобы обеспечить надлежащее накопление СО2 и лучшее поглощение кислорода.
Наш нос — единственный орган, который способен правильно «подготовить» воздух, которым мы дышим. В нашем носу обитает более 50 видов бактерий, как полезных, так и, к сожалению, болезнетворных. Хорошая новость заключается в том, что нормальная микрофлора носа может довольно легко справиться с условно-патогенными и патогенными микроорганизмами при носовом дыхании, значительно снижая количества вредных бактерий на первой стадии дыхательного цикла. Если же вы дышите через рот, то для проникновения вредных бактерий нет никаких препятствий.
Также следует помнить, что слизистая оболочка, выстилающая нос, простирается до бронхов. Микробы, попадающие в слизь, секретируемую слизистой оболочкой, в большинстве своем погибают. Дыхание через рот делает нас более восприимчивыми к простуде и другим инфекциям.
Дыхание через рот также плохо влияет на легкие, сердце и другие органы и системы нашего организма. Некоторые исследования показывают, что дыхание через рот и связанная с ним гипервентиляция усугубляют астму, артериальную гипертонию, болезни сердца и другие проблемы, связанные со здоровьем.
Дыхание через рот приводит к снижению уровня углекислого газа, что замедляет деятельность мозга и рефлексы, а также может вызвать приступы головокружения, и, иногда, потери сознания. Хроническое дыхание через рот также вызывает сужение дыхательных путей.
Когда мы вдыхаем или выдыхаем через рот, дыхательные пути остаются недостаточно увлаженными, сосуды сужаются, что приводит к снижению количества кислорода, которое фактически абсорбируется через альвеолы в легких.
Дыша через рот, вы отказываете своему сердцу, мозгу и всем другим органам в оптимальном количестве кислорода. Даже если у вас нет симптомов сердечных заболеваний, у вас могут развиться аритмии и другие нарушения.
Дыхание через рот может привести к храпу или апноэ во сне.
Когда вдыхаемый воздух проходит через нос, слизистая оболочка носа рефлекторно отправляет сигналы через нервные окончания в область мозга, которая контролирует дыхание. При дыхании через рот слизистая оболочка носа остается не задействованной, что может привести к нерегулярному дыханию. Храп является предшественником апноэ во сне, а апноэ — предшественником низкого уровня внутриклеточного кислорода, что с течением времени может привести к сердечному приступу и смерти во сне.
Апноэ во сне — это разновидность нарушения дыхания во сне, при котором дыхание у спящего прерывается более чем на 10 секунд, а чаще – на 20-30 секунд. В тяжёлых случаях дыхание во сне может прерываться на 2-3 минуты и такие перерывы могут занимать до 60 % общего времени ночного сна.
Храп не только является серьезной проблемой для здоровья, но и социально неприемлем. Другие люди могут жаловаться на шум, который раздражает и не позволяет выспаться, находясь в одной комнате с храпящим.
Дыхание через рот приводит к сужению кровеносных сосудов.
Можно подумать, что при дыхании через рот мы вдыхаем больше воздуха, но на самом деле наше дыхание просто замедляется. При дыхании через рот наш мозг думает, что углекислый газ теряется слишком быстро, и стимулирует бокаловидные клетки, которые вырабатывают слизь, замедляют дыхание и вызывают сужение кровеносных сосудов.
Дыхание ртом лишает нас многих радостей жизни. Все эти прекрасные запахи, которыми мы наслаждаемся, влияют на наше поведение, воспоминания и многие функции вегетативной нервной системы.
Это происходит потому, что рецепторы в носу (обонятельные луковицы) являются прямыми расширениями части головного мозга — гипоталамуса. Каждая из наших ноздрей иннервируется пятью черепными нервами с противоположной стороны мозга.
Каждая ноздря функционирует независимо и синергетически в отношении фильтрации, нагревания, увлажнения, осушения и обоняния воздуха. Дыхание через рот может повлиять на внешний вид, привести к изменению прикуса, удлинению лица, и, из-за плохого качества сна, образованию мешков под глазами. Дыхание через рот также ускоряет потерю воды, увеличивая возможное обезвоживание.
Как избавиться от привычки дышать ртом?
Первый шаг — осознать, как вы дышите, когда не спите. Тренируйте себя дышать носом во время бодрствования, это поможет дышать носом и во время сна. Простая истина заключается в том, что дыхание через рот — верный способ помешать правильному дыханию и заполучить всевозможные проблемы со здоровьем. Если мы хотим прожить долгую и здоровую жизнь, мы никогда не должны дышать через рот, даже во сне.
Дыхание через нос — это ключ к долгой и здоровой жизни.
Источник