Адсорбционный способ получения азота

Получение азота из воздуха

Производство азота из воздуха необходимо для использования газа в различных сферах деятельности, например, металлургии, горнодобывающей и нефтехимической отраслях, медицине, пищевой промышленности. В атмосфере планеты присутствует 75% азота, что делает технологию выделения газа эффективной и выгодной.

Основные технологии производства азота

Вопрос, как получают азот из воздуха, имеет три варианта ответа. Инертный газ для промышленного применения на крупных предприятиях или практического использования в лабораторных условиях получают с помощью следующих методик:

  • Криогенное разложение воздуха, основанное на разнице в температуре кипения составляющих компонентов.
  • Адсорбционная технология, при которой разделение воздуха на азот и кислород осуществляется за счет разницы размеров молекул.
  • Мембранные установки также работают за счет разделения сжатого воздуха на составные компоненты.

Криогенная технология применяется более 100 лет. В основе процесса лежит сжатие поступающего атмосферного воздуха до необходимого уровня давления. Из полученной смеси удаляются влага, различные твердые примеси и углекислый газ. После обратного расширения очищенный воздух постепенно охлаждается и переходит в жидкое состояние. При температуре -196 градусов из смеси извлекается азот.

Использование криогенной установки экономически обосновано при большой потребности в инертном газе. Высокая стоимость и сложность оборудования позволяют устанавливать технику только на крупных предприятиях. Часто подобные установки используются для генерации кислорода, а азот в таких случаях является побочным продуктом.

Адсорбционные установки состоят из емкостей, наполненных молекулярными ситами с диаметром ячейки от 1 до 3 мм. При подаче в емкости воздушной смеси, большая часть молекул азота проходит через абсорбент, а кислорода — оседает на молекулярных ситах. Дополнительное осушение позволяет получить инертный газ, очищенный до уровня 99,9 процента. Чем меньший уровень очистки азота требуется, тем проще и дешевле будет оборудование в обслуживании.

Производство азота из воздуха мембранным способом похоже на адсорбционную технологию. В емкостях цилиндрической формы размещаются фильтры из специальных полимерных материалов. При подаче сжатого воздуха в систему сквозь волокна проходят молекулы воды, водорода и гелия. Кислород также проникает сквозь полимерные материалы, но с меньшей скоростью. На внутренних поверхностях волокон концентрируются молекулы азота, которые впоследствии осушаются и используются по назначению.

Достоинства адсорбционных установок для изготовления азота

Выделение азота из воздуха любым из указанных методов позволяет добиться высокого качества смеси, применимой в производственных целях. Наиболее востребованными на рынке являются установки адсорбционного типа. К преимуществам данной технологии и устанавливаемого оборудования можно отнести:

  • Простота эксплуатации, оперативный запуск и отключение, а также функция дистанционного управления.
  • Высокое качество разделения воздушного потока на молекулы азота и кислорода.
  • Небольшое потребление электроэнергии, а также минимальные эксплуатационные расходы.
  • Возможность регулировки работы в автоматическом режиме, оперативная перенастройка оператором.

Вопрос, как получают азот из воздуха, имеет три варианта решения. Оптимальным решением по совокупности затрат и качеству полученного вещества является покупка адсорбционной установки. Приобрести оборудование можно в компании Оксимат, сотрудники которой выполнят монтаж и пусконаладку, а также предоставят гарантию на работы и установленную технику.

Источник

1.3.2. Производство азота из воздуха

Для практического использования, будь то в лабораториях или на крупных промышленных предприятиях, азот получают тремя основными способами, все которые основаны на разложении атмосферного воздуха: 1) методом криогенного разложения воздуха, 2) с помощью короткоцикловой безнагревной адсорбции, и 3) методом мебранной диффузии.

Читайте также:  Способ крепления двух труб

Криогенное разложение воздуха

Криогенный способ воздухоразложения был изобретен германским ученым Карлом фон Линде более 100 лет назад (кстати отметим, что имя фон Линде и в наше время носит компания Linde Gas — один из крупнейших мировых подрядчиков по поставке газов промышленным предприятиям). Этот способ сводится к фракционной перегонке сжиженного атмосферного воздуха, и основан на различии в температурах кипения (испарения) его составных частей: азота, кислорода, аргона и других газов. Вратце, процесс заключается в следующем: вначале, атмосферный воздух сжимается до высокого давления. После сжатия, из сжатого воздуха удаляются твердые примеси, влага, а также двуокись углерода (углекислый газ CO2). Очищенный сжатый воздух подвергается обратному расширению, в результате чего охлаждается до степени сжижения составляющих его газов. После этого, полученная жидкость постепенно испаряется, и по мере испарения из нее пофракционно извлекаются азот (температура кипения -196°C), кислород (температура кипения -183°C), аргон и другие редкие газы.

Способ экономически оправдан только при значительной потребности в азоте. Обычно, криогенные азотные установки используются крупными предприятиями химической и металлургической промышленности: первые получают азот для дальнейшего его связывания с водородом процессом Хабера с получением аммиака NH3, который затем или используется в качестве удобрения непосредственно, или конвертируется в нитрат аммиака и также используется в качестве удобрения, или используется в качестве прекурсора при синтезе других химических соединений.

Для предприятий же металлургической промышленности азот вообще часто является отходом производства: при разложении воздуха, металлургические предприятия стремятся получить, в первую очередь, кислород, который требуется для плавки стали из железной руды — а азот обычно выпускается в атмосферу и частично продается.

Криогенные установки дороги как при покупке, так и затем в обслуживании, технически сложны, имеют значительные габариты (подходят обычно только для размещения на улице), но позволяют получать азот очень высокой чистоты (порядка 99,999% и даже выше) и в очень больших количествах.

Получение азота адсорбцией кислорода

Адсорбционный способ выделения азота из воздуха основан на различиях в размере молекул основных составных частей воздуха: азота и кислорода. Адсорбционная установка по получению азота состоит из емкостей-адсорберов (обычно парных, иногда имеющихся в большем четном количестве), заполненных адсорбентом — углеродными молекулярными ситами, или сокращенно CMS, от английского «Carbon Molecular Sieve». Эти молекулярные сита выглядят обычно как зерна или продолговатые цилиндрики черного цвета, диаметром 1. 3 миллиметра:


Углеродные молекулярные сита

CMS, используемые в адсорбционных установках для получения азота, имеют значительный объем пор, причем поры эти имеют входной размер порядка 3 ангстрем (=0,3 нм). Молекулы кислорода, имеющие кинетический диаметр примерно 2,9 Å, проникают в поры и задерживаются ими; молекулы азота с кинетическим диаметром 3,1 Å беспрепятственно проходят через слой адсорбента. Конечно, на практике, часть молекул кислорода проходит через адсорбент, не задерживаясь в нем; наоборот, часть молекул азота попадает в поры большего, чем расчетный 3,0 Å, размера и задерживается в них. Тем не менее, на выходе адсорбера получается газовая смесь, более или менее обогащенная азотом (отметим, что попутно CMS частично извлекают из сжатого воздуха и содержащуюся в нем парообразную влагу — и хотя для обеспечения более долгого срока службы молекулярных сит желательно подавать на вход адсорбционного генератора азота уже осушенный сжатый воздух, произведенный азот будет также и дополнительно осушен).

Так как адсорбент, углеродные молекулярные сита, имеет ограниченную емкость пор и, соответственно, ограниченную удерживающую способность, довольно быстро (в практических реализациях адсорбционных азотных генераторов, через 40. 200 секунд) наступает необходимость провести его регенерацию, то есть восстановить его удерживающую способность. Для этого, давление в адсорбере резко сбрасывается в атмосферу, что вызывает выход ранее задержанных молекул кислорода из пор CMS. Для более полного восстановления CMS, после сброса давления в адсорбер подается часть вырабатываемого в это время в другом адсорбере азота, который продувается через подлежащий регенерации адсорбер под давлением чуть выше атмосферного, «вымывая» из его пор все еще остающиеся в нем после сброса давления молекулы кислорода. Полученная газовая смесь, представляющая собой воздух с несколько повышенным содержанием кислорода, выбрасывается в атмосферу. После завершения регенерации, азот в течение еще некоторого времени продолжает поступать в адсорбер, но уже при закрытом сбросном клапане, в результате чего давление в адсорбере поднимается до уровня, присутствующего в системе. (Как вариант, например, показанный на схеме выше, конструкция установки может предусматривать проведение регенерации и последующего выравнивания давления не подачей азота непосредственно из одного адсорбера в другой, а из промежуточного азотного накопителя, для чего в конструкцию азотного генератора вводятся дополнительные клапаны).

Читайте также:  Возможен один способ изменения внутренней энергии совершение работы

Адсорберы в адсорбционной установке периодически (в соответствии с расчетной частотой регенерации) меняются ролями: рабочий адсорбер переходит в режим регенерации, а прошедший регенерацию становится рабочим. Адсорбционный метод получения азота также называют методом короткоцикловой безнагревной адсорбции (КЦБА): короткоцикловой — из-за частой смены ролей адсорберов, безнагревной — так как регенерация CMS проводится без какого-либо нагрева продуваемого через них азота.


Схема устройства азотной установки, работающей по принципу КЦБА

Адсорбционные генераторы азота относительно недороги как в плане капитальных вложений, так и в обслуживании, компактны, просты конструктивно и в обслуживании. Адсорбционные установки способны вырабатывать азот в небольших и средних количествах, и также, как и криогенные линии, позволяют при необходимости получать азот высокой чистоты — до 99,999% и выше. Однако, в отличие от криогенных установок, на которых получение азота низкой чистоты никогда не рентабельно, с помощью адсорбционных генераторов азота можно, если не нужна самая высокая чистота, получать и азот пониженной чистоты — 99,99%. 99,9%. 99% и так далее вплоть да «грязного» азота с чистотой 95% — при этом, азотная установка адсорбционного типа, отрегулированная на производство азота меньшей чистоты, будет иметь бóльшую производительность, чем та же установка, но отрегулированная на выработку более высокоочищенного газа; соответственно меняются и значения потребления установкой сжатого воздуха. Широкий диапазон производительности и возможной чистоты получаемого азота определяет и разнообразие применений адсорбционных генераторов азота — лабораторные модели встречаются в научных учреждениях и в лабораториях предприятий, а большие агрегаты снабжают азотом крупные производства пищевой, электронной, нефтедобывающей, маслоэкстракционной и других отраслей промышленности.

Получение азота способом мембранного разделения воздуха

Все основные и реально могущие быть использованы для практических целей способы получения азота основаны на разложении атмосферного воздуха. Выше мы кратко описали принцип работы адсорбционных установок по получению азота. Кроме них, существуют мембранные установки, в основе которых стоят т.н. мембранные модули воздухоразделения, представляющие собой емкости, обычно цилиндрической формы, внутри которых параллельно размещено множество волокон-«макаронин» из специальных полимерных материалов — полиимида, полисульфона, полифенилоксида. Сжатый воздух подается на вход мембранного модуля, откуда равномерно распределяется между всеми отдельными волокнами, поступая на их внутреннюю сторону. Стенки волокон представляют собой мембраны с ассиметричным расположением пор, через которые преференциально, то есть быстрее и легче всего, на внешнюю сторону волокон диффудируют молекулы воды H2O, водорода H2 и гелия He. Со средней скоростью через стенки проникают молекулы кислорода, а также углекислого газа CO2. Наоборот, преимущественно на внутренней стороне мембран остаются, из обычно содержащихся в воздухе веществ, молекулы азота, а также аргона и угарного газа CO. Как и в случае с адсорбционными азотными установками, в процессе производства азота мембранным способом он также доосушается.

Читайте также:  Народный способ успокоить свои нервы

Мембраны чрезвычайно чувствительны к наличию загрязнений, особенно к попаданию на них компрессорного масла. Мембранные модули большинства (но не всех) производителей нуждаются также, для эффективной работы, в специальном подогревании поступающего на их вход сжатого воздуха. Тем не менее, мембранные установки для получения азота, в целом, обычно все же несколько проще по конструкции, чем работающие по принципу короткоцикловой безнагревной адсорбции: например, КЦБА-установке требуется как минимум 2 впускных клапана (обычно, с электромагнитным приводом) для запуска сжатого воздуха в один или другой адсорбер, 2 аналогичных клапана для сброса давления из тех же адсорберов и, когда это предусмотрено конструкцией, еще 2 или более клапанов для перепускания азота из промежуточного накопителя обратно в адсорберы для проведения их регенерационной продувки и последующего выравнивания давления. Все эти клапаны у мембранного генератора азота отсутствуют.

К сожалению, сам принцип устройства мембранных установок для производства азота и сами свойства существующих в наше время материалов изготовления мембран не позволяют получение азота высокой чистоты. На практике, существующие промышленно изготавливаемые мембранные азотные генераторы ограничены «потолком» примерно в 99,5%.

Источник

Получение азота в промышленности

Все способы получения азота в промышленности основаны на разделении атмосферного воздуха, который является самым доступным сырьем и содержит около 75% целевого продукта. Другие методы отличаются высокими удельными затратами и используются преимущественно в исследовательских лабораториях. В промышленности азот получают как для собственных нужд, так и для продажи. С воздухоразделительных установок готовый газ поступает непосредственно к потребителям или закачивается в баллоны для хранения и транспортировки.

Производство азота в промышленности ведется по трем технологиям:

Генераторы
и модульные
азотные станции

Криогенное производство

Способ заключается в пофракционном испарении сжиженного воздуха и основан на разнице температур кипения его компонентов. Процесс протекает несколько этапов:

  • Воздух сжимается в компрессорной установке с одновременным отбором тепла, выделяющегося при компримировании.
  • Перед тем как получить азот, из сжиженного воздуха удаляют воду и углекислоту, которые становятся твердыми и выпадают в осадок.
  • После снижения давления смесь начинает кипеть, а ее температура падает до -196 °C. Происходит последовательное испарение азота, кислорода и благородных газов.

Криогенное получение азота в промышленности оправдано при значительном расходе, а также при высоких требованиях к его составу. Чистота конечного продукта достигает 99,9999%. Энергоемкое и габаритное оборудование отличается высокой сложностью, требует профессиональной подготовки обслуживающего и технологического персонала.

Мембранное отделение азота

Чтобы понять, как добывают азот в промышленности методом мембранного разделения, нужно разобраться в структуре используемых для этого модулей. Они представляют собой цилиндры, в которых размещены ориентированные вдоль стенок волокна — макаронины. Сжатый воздух подается на торцы полимерных трубок, которые пропускают молекулы азота. Другие вещества удаляются через стенки волокон. Модули имеют низкую фильтрующую способность, поэтому вторичный продукт — это обогащенный кислородом воздух.

Недостатком такого способа считается чувствительность мембран к загрязнениям. Перед тем как получить азот, сжатый воздух очищают от конденсата и масла. Максимальная чистота целевого продукта составляет 95% и падает с повышением производительности установки.

Источник

Оцените статью
Разные способы