- Абсорбционная осушка газа
- Список использованной литературы
- Осушка газа
- Для чего нужна осушка газа?
- Способы осушки газа
- Абсорбционный метод осушки газа — Гликолевая осушка
- Основные преимущества абсорбционного метода осушки газа:
- Адсорбционный метод осушки газа
- Основные преимущества адсорбционного метода осушки газа:
- Другие способы осушки газа
- Примеры требований к содержанию газов в воде:
- Билеты физика. термодинамика и т.д (16-23) / Билет 23 / 3 / 14. Адсорбционная осушка
Абсорбционная осушка газа
Авторы: Телишева К.С., Стародуб М.В.
Источник: X Международная студенческая научная конференция Студенческий научный форум – 2018 Кубанский государственный технологичнский университет. Краснодар, Россия. https://scienceforum.ru…
Вода, в тех или иных количествах, присутствует в любом газе. Большинство сырых газов, не прошедших газоподготовку являются влагонасыщенными – т.е. содержат максимум воды при каких–то фиксированных давлениях и температуре. При этом речь идет не о воде в свободной форме, которая может каплями лететь с газом и удаляется с помощью сепараторов, а о парах воды, для удаления которой требуются другие технологии и соответствующее оборудование.
Пары воды способны образовывать с углеводородами комплексные соединения, называемые гидратами. Гидраты углеводородных газов представляют собой белые кристаллы, похожие на спрессованный снег или лед. Они могут закупоривать газопроводы и сильно осложнять их эксплуатацию, а также работу компрессоров. Поэтому, степень осушки газа определяется не только возможностью конденсации воды, но и образованием гидратов газа. Гидраты нестабильны и при изменении температуры или давления легко разлагаются на газ и воду.
Характерно, что гидраты способны образовываться только при повышенных давлениях и при температурах выше нуля, причем более тяжелые углеводороды образуют гидраты легче, чем низкомолекулярные. Так, например, метан способен образовывать гидрат при температуре 12,5°С и давлении 100 атм. Этан при этой же температуре образует гидрат под давлением всего около 25 атм. Гидраты могут существовать только при наличии избыточной влаги в газе. То есть, когда парциальное давление паров воды в газовой фазе больше давления паров гидрата. Таким образом, содержание в газе влаги, должно соответствовать такой точке росы, при которой давление насыщенного водяного пара меньше давления паров гидрата при температуре среды.
Существуют различные способы борьбы с гидратами. Это осушка газа жидкими или твердыми поглотителями. Также на газовых промыслах распространен способ подачи метанола в струю газа. При этом он образует с парообразной и жидкой влагой спиртоводные смеси, температура замерзания которых значительно ниже нуля. Пары воды поглощаются из газа, что значительно снижает точку росы, и, следовательно, создаются условия для разложения гидратов или для предупреждения их образования.
Основным условием эффективного действия метанола является взаимодействие паров воды с парами метанола и дальнейшая конденсация их, что приводит к значительному понижению влагосодержания газа. Наибольшая эффективность метанола может быть достигнута с применением его в качестве средства, предупреждающего гидратообразование, а не для разрушения уже образовавшихся гидратов. При этом метанол необходимо впрыскивать в газовый поток, обеспечив хорошее распыление и смешение с общим газовым потоком.
Для борьбы с гидратообразованием все большее применение находят электролиты и, в частности, водные растворы хлористого кальция. Это недорогой, безопасный и достаточно эффективный антигидратный ингибитор. Водные растворы хлористого лития также относятся к сильным электролитам, а свойства гигроскопичности их гораздо выше, чем у хлористого кальция. При сопоставлении величины понижения равновесной температуры гидратообразования, в присутствии растворов хлористого лития в зависимости от его концентрации с аналогичными характеристиками других антигидратных ингибиторов установлено, что исследованные растворы наиболее эффективны.
Для осушки газа в качестве абсорбента используются гликоли, а для извлечения тяжелых углеводородов – углеводородные жидкости. Абсорбенты, применяемые для осушки газа, должны обладать высокой взаиморастворимостью с водой, простотой и стабильностью при регенерации, низкой вязкостью при температуре контанта, низкой коррозионной способностью, не образовывать пен или эмульсий. На современных промыслах чаще применяют диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ). Реже, при осушке впрыском в теплообменники в качестве ингибитора гидратообразования используется этиленгликоль (ЭГ). Ряд производных ди– и триэтиленгликоля или побочные продукты, получаемые при их производстве (этилкарбинол, тетраэтиленгликоль, пропиленгликоль и др.), хотя и обладают высокой гигроскопичностью, широкого применения в качестве осушающих агентов не нашли.
ДЭГ – это бесцветная жидкость с температурой кипения 244,5°С. Плотность 1,117 г/см 3 и температурой замерзания 6,5°С. ДЭГ полностью растворим в воде. В основном ДЭГ в качестве обезвоживающего агента применяют при осушке природных газов. Иногда проводят совместную осушку и очистку газов от сероводорода смешанными растворами этаноламинами и ДЭГ.
Преимущество ДЭГа перед ТЭГом – меньшая склонность к ценообразованию при содержании в газе конденсата. Кроме того, ДЭГ обеспечивает лучшее разделение системы вода – углеводороды. Однако ТЭГ обеспечивает высокую степень осушки, что приводит к большому снижению точки росы . ТЭГ имеет более высокую температуру разложения. Следовательно, ТЭГ можно нагревать до более высокой температуры и регенерацию (восстановление) его проводить без вакуума.
Чем выше концентрация подаваемого гликоля, тем глубже степень осушки. Концентрация гликоля зависит от эффективности его регенерации. При атмосферном давлении ДЭГ можно регенерировать до 96,7%, а ТЭГ-до 98,1%. Гликоли в чистом виде не вызывают коррозии углеродистых сталей. Регенерация гликолей проводится до получения свежего раствора. Потери гликолей при использовании их в качестве ингибиторов гидратов складываются из потерь при регенерации (термическое разложение и унос), потерь в результате неполного отделения от газа в сепараторах, растворения гликолей в конденсате и газе, всевозможных утечек и др.
На практике о влагосодержании углеводородного газа судят по его точке росы, пони- мая под этим температуру ниже которой водяной пар конденсируются, то есть выпадает из газа в виде росы.
Технологическая схема установки осушки газа с помощью ДЭГ представлена на рис.1 Она состоит из абсорбера 1, десорбера (выпарной колонны) 5 и вспомогательного оборудования (теплообменники, насосы, фильтры, емкости и др.).
Сущность процесса осушки газа жидкими поглотителями заключается в следующем: при контакте абсорбента с газом в цилиндрическом аппарате, называемом абсорбером, в который снизу подается газ, а сверху – жидкость, абсорбент. При взаимодействии газа и жидкости пары воды поглощаются абсорбентом. Внутри абсорбера помещены перегородки (тарелки) для улучшения контакта между абсорбентом и газом. Процесс ведется при температуре около 20°С и давлении от 2 до 4 МПа. Сверху абсорбера выходит осушенный газ, а снизу обводненный абсорбент. Обводненный (насыщенный влагой) абсорбент поступает в другой аппарат – десорбер – для отборки воды. Процесс десорбции воды проводится при повышенных температурах, но не выше 170°С для ДЭГ и 191°С для ТЭГ, так как выше этих температур гликоли разлагаются. Десорбер, как и абсорбер представляет собой цилиндрический тарельчатый аппарат. Насыщенный гликоль, предварительно подогретый в теплообменнике, подается в середину десорбера. Сверху его выходят пары воды, которые конденсируются в конденсаторе-холодильнике и конденсат частично возвращается наверх десорбера в качестве орошения. Вниз десорбера подводится тепло путем подогрева части гликоля в паровом подогревателе. Регенерируемый гликоль, как правило, может содержать не более 5% массовых воды. Далее он охлаждается в теплообменнике–холодильнике и возвращается в абсорбер.
Рисунок 1 – Технологическая схема абсорбционной осушки газа
Основные преимущества абсорбционного метода осушки газа:
- не высокие перепады давления;
- низкие эксплуатационные расходы;
- возможность осушки газов с высоким содержанием веществ, разрушающих твёрдые сорбенты.
К недостаткам данного способа относят:
- необходимость повышения температуры газа выше 40° С;
- средний уровень осушки;
- Возможность вспенивания поглотителей.
Иногда применяется комбинированная осушка газа вначале жидким поглотителем, а затем доосушка твердым адсорбентом. Для более полного удаления влаги используются адсорбционные методы осушки углеводородного газа.
Список использованной литературы
1. Мановян А.К., Технология первичной переработки нефти и природного газа/А.К. Мановян-М.:Химия,2001.-568с.
2. Мановян А.К., Технология переработки энергоносителей/А.К. Мановян-М.:КолосС,2004.-456с.
3. Технология и оборудование процессов переработки нефти и газа / Ахметов С.А., Баязитов М.И., Кузеев И.Р., Сериков Т.П. // ред. Ахметова С.А. – Санкт-Петербург: Недра, 2006 г. – 868 стр.
Источник
Осушка газа
Осушка газа – это операция удаления влаги из газов и газовых смесей, которая обычно предшествует транспортировке природного газа по трубопроводам или низкотемпературному разделению газовых смесей на компоненты.
Для чего нужна осушка газа?
В данном случае, «сушить» = «удалять воду». Вода, в тех или иных количествах, присутствует в любом газе. Большинство сырых газов, не прошедших газоподготовку являются влагонасыщенными – т.е. содержат максимум воды при каких-то фиксированных давлениях и температуре. При этом речь идет не о воде в свободной форме, которая может каплями лететь с газом и удаляется с помощью сепараторов , а о парах воды, для удаления которой требуются другие технологии и соответствующее оборудование.
Осушка обеспечивает непрерывную эксплуатацию оборудования и газопроводов , предотвращая гидратообразование и возникновение ледяных пробок в системах. Наиболее важные методы осушки газа основаны на абсорбции или адсорбции влаги, а также на ее конденсации при охлаждении газа. Для проводимого осушительного процесса характерен такой показатель, как точка росы.
Существующие технологии осушки газа в промысловых условиях можно разделить на две большие группы:
- абсорбционная – технология с использованием жидких поглотителей;
- адсорбционная – технология с использованием твердых поглотителей.
Способы осушки газа
Воду из газа, как и любой другой компонент, можно удалять физическим методом (адсорбцией, абсорбцией, мембранами, конденсацией (холодом)), химическими методами (CaCL2 и пр.) и их бесконечными гибридами.
Коммерческое применение нашли следующие способы, расположенные в данном списке в порядке убывания популярности:
- Абсорбция Гликолевая осушка
- Адсорбция Цеолиты, силикагели или активированный алюминий
- Конденсация Охлаждение с впрыском ингибиторов гидратообразования (гликолей или метанола)
- Мембраны На основе эластомеров или стеклообразных полимеров.
- Химический метод Гигроскопичные соли обычно хлориды металлов (CaCL2 и пр.)
Подавляющее количество установок в мире основаны на первых двух способах.
Абсорбционный метод осушки газа — Гликолевая осушка
Гликолевая осушка — самый распространённый способ, используемый для умеренной осушки газа, достаточной для транспортировки по трубопроводам, в том числе и магистральным, и использовании такого газа в качестве топливного.
Методы осушки гликолями обеспечивают требования «СТО Газпром 089-2010 Газ горючий природный, поставляемый и транспортируемый по магистральным газопроводам».
Типовые установки гликолевой осушки газа позволяют достигать ТТР (Температуры Точки Росы) по воде в диапазоне -10°…-20° С.
Существуют и более продвинутые (и, естественно, более дорогие) модификации гликолевых осушек, основанных на процессах известных под названиями, данными им изначальными патентообладателями – такими как Drizo, Coldfinger и прочими, и позволяющие достигать ТТР до -80° С.
Основные преимущества абсорбционного метода осушки газа:
· Не высокие перепады давления
· Низкие эксплуатационные расходы
· Возможность осушки газов с высоким содержанием веществ, разрушающих твёрдые сорбенты
К недостаткам данного способа относят:
· Необходимость повышения температуры газа выше 40° С
· Средний уровень осушки
· Возможность вспенивания поглотителей
Оборудование для гликолевой осушки
Стандартная гликолевая осушка состоит из двух основных блоков:
— абсорбера тарельчатого или насадочного типа
— блока регенерации гликоля
Адсорбционный метод осушки газа
Адсорбционные установки осушки газа, в основном, применяются для глубокой осушки газа (ТТР по воде -40°…-100°С) в составе криогенных заводов. Одним из свойств адсорбционных установок является принципиальная возможность одновременного удаления и воды и целого ряда примесей (углеводородов, кислых газов и пр.). Однако, использование адсорбционных установок для многокомпонентной очистки газа целесообразно только при низких «следовых» концентрациях удаляемых компонентов.
Основные преимущества адсорбционного метода осушки газа:
· Продолжительный срок службы адсорбента
· В широком диапазоне технологических параметров достигается низкая точка росы и высокая ее депрессия
· Изменение температуры и давления не оказывает существенного влияния на качество осушки
· Процесс отличается простотой и надежностью
· Большие капитальные вложения
· Высокие эксплуатационные затраты
· Загрязнение адсорбента и частая его замена или очистка
· Отсутствие надежности непрерывного цикла технологического процесса
Оборудование, применяемое при данном способе
Стандартная установка адсорбционной осушки газа состоит из блоков:
— два – четыре адсорбера колонного типа с гранулированным адсорбентом
Другие способы осушки газа
Конденсация, мембраны и прочие способы также обладают свойствами многокомпонентного очистки газа, однако в отличии от адсорбционной осушки газа они применяются для удаления основной массы нежелательных компонентов. Можно сказать, что адсорбционная установка является инструментом «тонкой» очистки газа, а конденсация и мембраны – «грубой».
Конденсация используется при необходимости достижения удаления углеводородов и воды (ТТР по воде/углеводородам 0…-20°С); в этом же диапазоне находят свое применение и мембраны, которые также могут обеспечить удаление некоторого кол-ва кислых газов.
Примеры требований к содержанию газов в воде:
Инжиниринговая компания «ГазСёрф» на заказ разрабатывает, производит сборку и осуществляет комплексную поставку «под ключ» установки осушки газов в блочно-модульном исполнении.
Источник
Билеты физика. термодинамика и т.д (16-23) / Билет 23 / 3 / 14. Адсорбционная осушка
Сущность адсорбционной осушки состоит в избирательном поглощении поверхностью пор твердого адсорбента молекул воды с последующим извлечением их из пор внешними воздействиями (повышением температуры адсорбента или снижением давления среды).
Осушка газа твердыми осушителями осуществляется в аппаратах периодического действия с неподвижным слоем осушителя. Полный цикл процесса осушки состоит из стадий адсорбции, регенерации и охлаждения адсорбента. В качестве осушителей применяют силикагели, алюмосиликагели, активированный оксид алюминия, бокситы и молекулярные сита (цеолиты). Их адсорбционная емкость существенно зависит от размера пор и соответственно удельной поверхности последних. Особенность молекулярных сит заключается в способности поглощать не только влагу, но и сероводород и углекислоту, т.е. очищать газ от кислых компонентов. Для уменьшения сопротивления движению газа адсорбенты изготавливают в виде шариков или гранул. Требования к осушителю очень жесткие: он должен быстро поглощать влагу из газа и легко регенерироваться, выдерживать многократную регенерацию без существенной потери активности и прочности, иметь высокую механическую прочность и поглотительную способность, оказывать малое сопротивление потоку газа, иметь невысокую стоимость. Иногда применяют комбинацию двух осушителей в одном аппарате, например, силикагеля и активированного оксида алюминия, что позволяет сочетать высокую поглотительную способность силикагеля с высокой степенью осушки газа оксидом алюминия. Для регенерации осушителя используют нагретый газ. Температура десорбции обычно равна 160-180 о С (для молекулярных сит — 280 — 290ºС).
Установка осушки адсорбцией состоит, как минимум, из двух адсорбционных аппаратов. Принципиальная схема установки приведена на рис. 17.
Влажный газ, пройдя через каплеотбойник, поступает сверху в один из адсорберов и проходит его насквозь. Другой адсорбер в это время находится на стадии регенерации или охлаждения. Осушенный газ поступает на дальнейшую переработку или в газопровод. Часть исходного газа, пройдя через трубчатый подогреватель, направляется в низ другого адсорбера для регенерации осушителя. Газ с регенерации проходит теплообменник для охлаждения, сепаратор для отделения воды и смешивается с основным потоком влажного газа.
Рис. 17. Tехнологическая схема осушки газа твердыми поглотителями:
1—водоотбойник; 2, 7 — воронка; 3 — трубчатый нагреватель; 4, 5 — адсорберы; 6 — сепаратор; 8 теплообменник Потоки: I — влажный газ; II— осушенный газ; III — обводная линия.
Полный цикл работы одного аппарата включает четыре следующих периода:
адсорбция при температуре 35 — 50°С, давлении 8-12 МПа, длительности контакта газа с адсорбентом не менее 10 с (скорость газа в аппарате 0,15 — 0,30 м/с). Длительность адсорбции выбирают исходя из адсорбционной емкости поглотителя, начальной и конечной влажности газа, загрузки адсорбента в аппарате;
нагрев адсорбента, который производится после переключения аппарата с режима адсорбции на десорбцию. Нагрев ведется горячим газом из трубчатого нагревателя со скоростью не более 60°С в час. Время, затрачиваемое на нагрев, составляет 0,6 -0,65 от периода адсорбции;
десорбция — вытеснение из пор адсорбента поглощенной воды и восстановление его адсорбционной активности. Она начинает происходить, когда температура адсорбента достигнет 200 -250 °С (для силикагелей) или 300 — 350 °С (для цеолитов). Горячий газ в периоды нагрева и десорбции проходит слой адсорбента в направлении, противоположном направлению осушаемого газа в периоде адсорбции (т. е. снизу вверх);
охлаждение адсорбента, его начинают после завершения десорбции и переключения аппарата на режим адсорбции (осушки). Охлаждение ведут исходным холодным газом. Период охлаждения занимает 0,35 — 0,40 от времени, затрачиваемого на адсорбцию.
При адсорбционной осушке наличие в газе углеводородов от бутанов и выше осложняет процесс, потому что эти углеводороды поглощаются в стадии адсорбции на выходной части слоя адсорбента и при десорбции воды при высокой температуре склонны к образованию коксовых отложений в порах адсорбента. Постепенное закоксовывание адсорбента ведет к снижению его адсорбционной емкости, поэтому требуется периодически регенерировать адсорбент, т. е. выжигать из его пор кокс.
При осушке газов, содержащих кислые компоненты, наиболее надежными в работе являются цеолиты.
Отличительной особенностью адсорбционного метода осушки по сравнению с абсорбционным является высокая степень осушки газа вне зависимости от его параметров, компактность установки, малые капитальные затраты для установок малой мощности. Недостатками метода являются большие расходы на адсорбент, высокое сопротивление потоку газа и большие затраты при строительстве установок большой мощности.
Развитие адсорбционного метода идет в направлении разработки короткоцикловых процессов осушки газов. Продолжительность циклов адсорбции и десорбции составляет 1,5-10 ч, причем адсорбция ведется при повышенном давлении и температуре окружающего воздуха, а десорбция — при атмосферном давлении и той же температуре. Преимущество короткоцикловой адсорбции заключается в повышении производительности и возможности полной автоматизации процесса.
Адсорбционная осушка позволяет достичь депрессию точки росы до 100°С (точка росы до минус 90ºС). Поэтому этот метод применяют, когда требуется высокая глубина осушки. Очищенный природный газ, направляемый, например, на гелиевый завод, обязательно подвергают адсорбционной осушке на цеолитах, так как к сырью установок низкотемпературной переработки предъявляются жесткие требования по содержанию влаги (точка росы должна быть не выше минус 70 °С).
Источник