Меню

6 способ сегментации целевой аудитории

Сегментирование целевой аудитории: методы и примеры

Сегментация целевой аудитории — это разделение потенциальных покупателей на определённые группы, где они объединяются в похожих запросах. В зависимости от понимания интересов этих групп продавец сможет сформировать предложение, которое отлично продаст его товар или услугу. О самых крутых методиках сегментирования целевой аудитории я расскажу в статье.

Метод сегментации №1. Классика

Существует множество принципов разделения ЦА, в том числе и те, что вы сами себе определите. Основные:

Локация — или география целевой аудитории. В зависимости от масштабов бизнеса делится на районы, города, страны. Например, если у вас магазин в спальном районе нет надобности делать рекламу на всех билбордах города или страны. Другое дело, если у вас магазин интернет-товаров с доставкой по всей России. Или у вас магазин досок для сёрфинга и вы рекламируете его в северных регионах. Основные критерии деления по географическому принципу:

  • регион;
  • населённый пункт и его тип;
  • плотность и численность населения;
  • климат, погодные условия.

Демографические данные — их можно хорошо проследить на примере бьюти-сферы: спа-салоны, парикмахерские, барбершопы, детские парикмахерские. Можно отталкиваться от определённого сегмента и формировать УТП целенаправленно.

Критерии для сегментации:

  • пол;
  • возраст;
  • семейное положение;
  • уровень дохода;
  • образование;
  • занятость;
  • род деятельности;
  • религия;
  • национальность.

Психография — самое сложное направление. Здесь происходит деление по образу жизни, ценностям, хобби и другим. В результате последовательной сегментации вы получите чёткую и понятную вам целевую аудиторию, для которой проще будет создать предложение. Критерии:

  • выгоды для покупателя;
  • приверженность бренду;
  • насколько клиент лоялен к марке;
  • для чего покупается товар;
  • как часто используется клиентом услуга или товар;
  • степень готовности к покупке;
  • объём;
  • бюджет;
  • лицо, принимающее решение;
  • экспертность.

Метод сегментирования №2. «5W» Марка Шеррингтона

Суть методики заключается в том, что нужно ответить на пять вопросов:

  • What — что продаём, какие товары или услуги?
  • Who — кто ваш идеальный покупатель?
  • Why — почему нужно купить именно ваш товар? Какую проблему он решит?
  • When — когда или в какой ситуации покупается товар?
  • Where — где происходит покупка?

Эта методика очень проста и не требует специальных навыков. Например, танцевальная студия. Берём всю возможную целевую аудиторию по направлениям танца в студии и делим её на возможное количество частей.

Для удобства можно сделать такую таблицу:

Что? Фитнес на пилоне Свадебный вальс Детские танцы
Кто? Девушки 25-35 лет Пары, готовящиеся к свадьбе 20-30 лет Родители детей 6-10 лет
Почему? Желание хорошо выглядеть Чтобы научиться танцевать на свадьбе «вальс жениха и невесты» Физическое развитие ребёнка
Когда? Круглый год Круглый год Преимущественно в учебное время (сентябрь-май)
Где? Тематические сообщества в соцсетях, салоны красоты, фитнес-залы Тематические сообщества в соцсетях, салоны свадебной одежды, банкетные залы Тематические мамские сообщества в соцсетях, поликлиники, школы, секции

С этими данными получилось более детальное сегментирование. Если и этого недостаточно можно воспользоваться следующей методикой.

Уникальное предложение — -50% на ВСЕ курсы Skillbox. Получите современную онлайн-профессию, раскройте свой потенциал.

Метод поиска ЦА №3. Khramatrix

Это расширенный вариант предыдущего способа. Он дополняет 5 вопросов из предыдущего абзаца и состоит из следующих пунктов:

  • описание ЦА по географическим и демографическим критериям;
  • поведенческие особенности;
  • готовность к покупке (готов приобрести, собирает информацию, сравнивает варианты, хочет попробовать);
  • целевое действие, которое подталкивает к покупке.
Что? Фитнес на пилоне Свадебный вальс Детские танцы
Кто? Девушки 25-35 лет Пары, готовящиеся к свадьбе 20-30 лет Родители детей 6-10 лет
Почему? Желание хорошо выглядеть Чтобы научиться танцевать на свадьбе «вальс жениха и невесты» Физическое развитие ребёнка
Когда? Круглый год Круглый год Преимущественно в учебное время (сентябрь-май)
Где? Тематические сообщества в соцсетях, салоны красоты, фитнес-залы Тематические сообщества в соцсетях, салоны свадебной одежды, банкетные залы Тематические мамские сообщества в соцсетях, поликлиники, школы, секции
Описание ЦА Девушки, которые много времени проводят в соцсетях. Часто посещают салоны красоты, следят за питанием и фигурой. Или просто эти интересуются, но не могут решиться. Уровень дохода средний Пара, которая готовится к свадьбе. Уровень дохода средний и выше. Работающие родители. Уровень дохода средний.
Поведенческие особенности Посещает разные места для молодежи: кафе, бары. Пара в отношениях, посещают соответствующие места. Рестораны, кинотеатры, парки и т.д. Жизнь в быстром темпе: дом-работа-школа-ребёнок.
Готовность купить Сравнивает разные студии Готовы к покупке Анализируют данные, сравнивают
Целевое действие Пригласить вступить в сообщество в соцсети. Совершить продажу и предложить скидку друзьям. Пригласить на пробное занятие

Метод №4. LTV

LTV (Lifetime Value) – это уровень пожизненной ценности клиента или какой доход он принесёт. Деление происходит на эконом, средний класс и VIP. Учитывается уровень дохода клиента, объёмы покупок, приверженность марке, лояльность в целом.

Этот метод позволяет планировать финансирование рекламных кампаний. При планировании рекламного бюджета отталкиваемся от того, сколько денег принесёт клиент и будет ли это выгодно. Например, на привлечение VIP-клиентов можно потратить больше финансов, чем на эконом.

Методика рассчитывается по следующим показателям:

  1. LTV = (доход за год — затраты на рекламу) / количество клиентов.
  2. LTV = средний чек (количество покупок за определённое время).
  3. LTV = средний чек (число покупок клиента за месяц) время удержания клиента (в месяцах).

В конце все данные перемножаются. Берём средние показатели за год и рассчитываем на человека, усреднённо.

Для наглядности данные можно рассмотреть в таблице:

Показатели Сегмент 1 Сегмент 2 Сегмент 3
Средний чек 4000 1000 2500
Число продаж клиенту на месяц 2 3 2
Время удержания клиента (в месяцах) 12 6 3

Группа 1. 4 000 * 2 * 12 = 96 000 руб.

Группа 2. 1 000 * 3 * 6 = 18 000 руб.

Группа 3. 2 500 * 2 * 3 = 15 000 руб.

После обработки данных видно, что первая группа наиболее интересна для бизнеса. Именно в этот сегмент нужно вкладывать максимум усилий. Подробнее о пожизненной ценности клиента, я писал тут.

Вы освоите новую профессию, научитесь применять Agile и Scrum и сможете претендовать на позицию руководителя проектов.

Метод №5. Лестница узнавания Ханта

Суть подхода в том, что на каждом этапе развития бизнеса бывает разная степень осведомлённости (проблемы, детали). Например, мама новорождённого ребёнка не знает о том, с какими проблемами может столкнуться школьник. На этом примере видно две ступени, а у Ханта их пять.

Лестница узнавания Ханта

Если давать описание каждой ступени, это выглядит так:

  1. Отсутствие осведомлённости. Целевая аудитория никогда не слышала о вашем продукте и не знает какую проблему он может решить. Они не станут покупать продукт сразу же. Игнорировать и сразу отметать эту ЦА тоже не стоит. Для знакомства с продуктом можно предложить подписаться на страницу товара в соцсети, сделать интересную рассылку. Или, например есть крутые курсы копирайтинга, а о преимуществах мало кто знает. Или вообще человек не предполагает, что они ему нужны. Тогда можно сделать гостевой пост там, где обитают, например, инстаграм-блогеры и выделить для них преимущества.
  2. Интерес. Человек заинтересовался продуктом, но ещё чувствует потребность в информации. Далее, он ищет способ удовлетворить потребность. На этом этапе важно правильно познакомить ЦА с товаром: комментарии, отзывы и истории покупателей.
  3. Поиск решения. ЦА сравнивает разные способы решения своего вопроса. Здесь важно дать по максимуму информации о том, как товар решит проблемы покупателя. Полезна будет экспертная информация — видео с производства, статьи с хорошим текстом, обзоры.
  4. Сравнение — выбор. На этой стадии человек уже определился со способом решения проблемы и делает выбор компании. Здесь важно показать почему именно ваш продукт самый лучший по сравнению с конкурентами. Например, как это сделал Twist. Они определили, что их клиенты либо уже пользуются Slack, либо выбирают между ними и этим конкурентом. Сделали прямо у себя на сайте сравнение и таким образом подталкивают к выбору своего продукта.
  5. Уверенность в выборе — покупка. Этап, на котором нужно «притормозить» и не мешать клиенту совершить заказ (навязчивая реклама). Можно предложить как бонус небольшую скидку. Слишком большой размер скидки насторожит клиента и отпугнёт.
Читайте также:  Способы выращивания виноградной улитки

Помимо всего прочего, ЦА важно не только сегментировать, привлечь и продать ей. Нужно удержать клиента. И не только удержать, а сделать так, чтобы они рекомендовали вас друзьям и знакомым. Для максимального результата нужно работать над качеством продукта, уровнем сервиса, повышением лояльности. Если нет опыта в работе непосредственно с продуктом — этому можно легко научиться на курсах продакт-менеджмента!

Источник

Создаем портрет ЦА, который действительно работает: правила, методы, советы и разбор ошибок

Анастасия Никонорова, бизнес-аналитик CityLife, поделилась с блогом Нетологии опытом в создании портрета целевой аудитории: с примерами и разбором главных ошибок.

Принято считать, что ключевая задача маркетинга — привлечение и удержание клиентов. И главный вопрос, который стоит перед большинством специалистов по маркетингу — это не то, какой инструмент следует выбрать, а то, как определить потребности клиентов и правильно сегментировать покупателей так, чтобы сделать предложение, от которого они не смогут отказаться.

Главный метод определения целевой аудитории в современном маркетинге — сегментация. Сегментация — это разделение клиентов на группы по заданным параметрам.

Для чего нужно сегментировать аудиторию?

Во-первых, чтобы понимать, кто ваш клиент, какие у него потребности, и на основании этого правильно позиционировать компанию.

Во-вторых, чтобы выстраивать уникальные механики взаимодействия с каждым из клиентов, повышать конверсию из предложения в покупку и общую лояльность клиентов.

Если вы предлагаете клиенту то, что ему потенциально интересно, то его лояльность бренду и компании увеличивается вне зависимости от того, совершил он покупку по этому предложению или нет.

По данным Website builder, 44% людей, получавших таргетированные письма, совершили как минимум одну покупку по содержащимся в них предложениям.

В среднем, сегментация повышает open rate на 14,69%, а click rate — на 60%.

При проведении исследования 52% опрошенных маркетологов сказали о необходимости сегментации базы данных в email-рассылках, так как индивидуальные предложения приносят в 18 раз больше доходов, чем широковещательные.

Какие данные сегментировать

В большинстве случаев сегментации подвергается текущая клиентская база. Но при создании нового бизнеса или отсутствии сбора данных сегментацию можно провести по результатам опросов существующих или потенциальных клиентов.

Многие воспринимают данные опросов только как качественный метод исследования, уступающий анализу покупательского поведения. На самом деле оба вида анализа (на основании опросов и истории покупок) должны использоваться в вашем бизнесе в равной мере, так как они преследуют различные цели.

Анализ результатов опросов используется для приоритизации задач бизнеса, создания вектора коммуникации с потребителями либо корректировки коммуникационной стратегии. Анализ истории покупок — для создания рекламных кампаний, построения механик программы лояльности и геймификации, изменения фокусировок маркетинга.

Например, даже профессиональный аналитик (только если он дополнительно не учился на психолога) не сможет понять лучше самого клиента, что клиенту действительно надо.

Да, данные о покупках могут показать, что клиенты уходят, что снижается средний чек, но понять, за счёт чего это происходит и чего не хватает потребителям, — можно лишь с помощью обратной связи.

При этом важно учитывать, что при проведении опроса погрешность могут внести психологические аспекты поведения. Во-первых, так как вы заинтересовались мнением человека, он попытается вас отблагодарить, давая ответы, потенциально угождающие вам. Во-вторых, на результат может значительно повлиять неправильная постановка вопроса или же ваша собственная склонность к подтверждению своей точки зрения.

Важные принципы проведения опросов

  1. Опрашивайте клиентов, у которых уже есть опыт использования вашего продукта или схожего продукта конкурентов.
  2. Задавайте открытые вопросы. Например, «Сколько бы вы заплатили за этот продукт?» вместо «Вы заплатили бы 100, 200 или 300 рублей?» или «Заплатили бы вы 500 рублей за этот продукт?». В противном случае срабатывает «эффект якоря» и человек будет отталкиваться от обозначенной суммы при ответе.
  3. Если вопрос относится к проблеме или боли клиента, то спросите, как он её решает. Если в ответ последует «никак», то приоритет у этой проблемы не так высок, как это описывает интервьюируемый.
  4. Избегайте обобщений. Вместо формулировки «Как часто вы пользуетесь сервисом?» используете «Сколько раз в месяц вы пользуетесь сервисом?».
  5. Для подтверждения позитивной позиции клиента попросите его совершить конкретное действие здесь и сейчас: подписаться на группу в соцсетях, заплатить за продукт, оставить контакты. Если он не готов этого совершить, то вряд ли он действительно купит продукт в будущем.
  6. Задавайте уточняющие вопросы. Если клиент говорит, что часто сталкивается с обозначенной проблемой, спросите, когда он сталкивался с ней в последний раз, после чего ответ может измениться.

Как сегментировать

В этом материале я постаралась отойти от стандартных методов сегментации рынка, которые приносят мало пользы на практике, и описала только те из них, которые мы сами используем при создании стратегий программ лояльности.

Сегментацию можно проводить даже в Excel, для более сложной аналитики и большого объёма данных можно использовать методы машинного обучения, языки Python, R, Scala, набирающий популярность Julia и другие.

Существует два крупных типа сегментаций: на основании статических и динамических данных.

Статические данные — критерии пользователей, которые не зависят от его действий, не меняются или меняются редко. К показателям статической сегментации относят: пол, возраст, географические данные.

Динамические показатели — те, что формируются на основании поведения пользователя относительно других пользователей: RFM-кластеризация, размер среднего чека, частота покупок и так далее. Границы сегментов, сформированных на основании поведения, динамические и меняются при совершении каждой новой покупки.

Пошаговое руководство проведения сегментации

1. Определить цель сегментации:

  • кто будет использовать результаты сегментации;
  • для чего они будут использоваться.

2. Выбрать один из методов сегментации или создать собственный алгоритм вычисления.

3. Понять, какие данные необходимы:

  • какая часть клиентской базы будет использоваться (активные клиенты; клиенты, совершившие N покупок; покупавшие определённый товар; установившие мобильное приложение; все клиенты);
  • выбрать период;
  • собрать показатели, необходимые для вычисления.

4. Обработать и подготовить данные:

  • собрать данные в один согласованный массив, где одна строка — одно наблюдение, один столбец — одна переменная;
  • проверить данные на ошибки и очистить их (убрать пустые или недопустимые значения);
  • убрать выбросы по каждому из параметров:

– посчитать стандартное отклонение. Факт его значительного отличия от среднего значения говорит о том, что в выборке присутствуют выбросы;

– вычислить медиану — величину, находящуюся в середине набора данных, упорядоченного по возрастанию или убыванию. Если количество членов нечётное, то она принимает значение суммы двух срединных членов, делённой на два;

Читайте также:  Подтвердите способ разблокировки устройства xiaomi

– вычислить верхнюю и нижнюю границу квартиля — величин, за пределами которых (выше и ниже соответственно) находится 25% значений;

– всё, что лежит выше суммы (разности) верхней (нижней) границы квартиля и межквартильного расстояния, умноженного на 1,5, является выбросами.

Выше я говорила о том, что данные опросов, как и количественные данные, можно сегментировать, но прежде их надо обработать:

  • проверка анкеты: если вы выполняете анкетирование не лично, а отдаёте на аутсорс или отправляете анкету по email, то первым делом следует проверить качество заполнения и отсутствие пропущенных ответов;
  • оцифровать: все анкеты необходимо перевести в электронный вид для продолжения анализа, после этого исправить ошибки, привести ответы на открытые вопросы к единым формулировкам;
  • чистка данных — на этом этапе следует повторно проверить данные на отсутствие пропущенных значений, выходы значений за обозначенные пределы. Анкеты с ошибками должны полностью исключаться из анализа.

Другой вопрос — какое количество клиентов опрашивать для получения точных данных. Один из вариантов — посчитать величину, используя для этого стандартные калькуляторы, введя в поиске «размер выборки». Но на самом деле это не так просто, подобные калькуляторы позволяют узнать размер выборки только по одному вопросу, на который будет всего два варианта ответа. Но в большинстве случаев анкета предполагает сбор большего количества данных.

Есть стандартные статистические формулы, которые используются для расчётов, но они предполагают, что вы уже знаете, в каком диапазоне будут находиться ответы.

Очевидно, что чем больше людей будет опрошено, тем точнее будет результат. Выборка на самом деле слабо зависит от генеральной совокупности, у вас может быть 5 тысяч клиентов или 5 миллионов, но по одинаковому числу параметров вам потребуется опросить одинаковое количество респондентов.

Давайте теперь разберём несколько методологий проведения сегментации.

RFM-анализ

RFM-анализ — это анализ по трём показателям:

  • Recency — показатель активности, вычисляется как давность последнего действия клиента (покупки, авторизации в личном кабинете, открытия email-рассылки).
  • Frequency — количество покупок (других действий) клиента.
  • Monetary — Lifetime value, жизненная ценность клиента, равна сумме его покупок или прибыли.

Часто при проведении RFM-анализа клиентов по каждому из параметров делят на группы по равным интервалам от минимального до максимального значения. Например, давность (recency) последней покупки до 1 недели, до 2 недель, до 3 недель.

Мы определяем границы кластеров с помощью вычисления суммы и разности среднего значения со среднеквадратичным отклонением, таким образом, получаем в кластере r2f2m2 наибольшее количество пользователей.

Индексы 1 и 3 в рамках RFM-анализа характеры для исключительных клиентов с различными особенностями поведения. Так, клиенты кластера r1m3 (при любом значении f) — это покупатели, которые ранее были доходны для компании, но перестали совершать покупки, причину чего необходимо выяснить с помощью опросов.

Кластер r3f3m1 является потенциальным для увеличения LTV (monetary), так как клиенты проявляют лояльность, но при этом совершают покупки на небольшие суммы. В такой ситуации следует предложить покупателям скидку при покупке на сумму от N рублей, либо порекомендовать сопутствующие товары на основании истории их покупок.

При помощи RFM-сегментации можно строить значительно более эффективную политику взаимодействия с клиентами, чем отправка писем всей клиентской базе. Для этого анализа вам потребуются необходимые показатели по клиентам, Excel и 30 минут работы.

Кластерный анализ

Цель кластерного анализа — объединить клиентов в группы по схожим параметрам. Наиболее популярный метод визуализации анализа — иерархическое дерево, каждый последовательный уровень которого — сужающиеся факторы различия.

Мы чаще всего используем одну из разновидностей кластерного анализа — k-means.

Алгоритм анализа следующий.

Назначить число кластеров k, на которое будут делиться составляющие кластеризации. Число k либо задаётся вручную (удобно определять количество кластеров на основании древовидной кластеризации), либо вычисляется как оптимальное значение с помощью машинного обучения.

После этого k произвольных точек назначаются центрами кластеров, и измеряется расстояние между назначенными центрами и всеми остальными точками внутри кластеризации. Принадлежность точки к кластеру определяется определением наименьшего расстояния до одного из k-центров.

Следующий шаг — выбор новых центров, их координаты будут равны среднему значению координат точек внутри кластера. Снова проводится распределение точек по k-кластерам, и операция повторяется до тех пор, пока значения расстояний внутри кластеров не повторятся, это означает, что достигнуто оптимальное деление.

После того как кластеры сформированы, необходимо понять, по каким параметрам точки в кластерах наиболее схожи, то есть — какие из особенностей поведения пользователей являются систематическими. Один из лайфхаков быстрого их определения — построение боксплотов (ящиков с усами), где значениями выступают показатели каждого клиента по выбранному показателю. Они сразу бросаются в глаза наименьшим размахом значений выборки.

На примере мы видим, что кластер сформирован благодаря схожести клиентов по индексам «Вариативность выбора» и «Частота участия в акциях», что представляет собой яркую особенность поведения. Эта группа является целевой для тестирования новой функциональности приложения, сбора обратной связи. Группа заинтересована в акциях и вводе новых товаров.

Этот анализ мы проводим на основании большого количества собранных данных, результат используем для проведения таргетированных акций. На практике мы выяснили, что результат сегментации требует тестирования, так как деление на кластеры может кардинально отличаться от месяца к месяцу.

Также данный вид сегментации можно использовать для анализа опросов. Но так как текстовые данные сложно преобразовать в числовые индексы, тем более, если речь идёт о тысячах анкетируемых, то мы рекомендуем задавать вопросы формата «Оцените важность/качество/ величину … от 1 до 5».

Подобным образом мы проводили опросы клиентов банка. Первоначально аудитория была разделена на пользователей различных продуктов банка. Для каждого продукта были сформулированы уникальные вопросы по важности факторов выбора, где анкетируемому предлагалось поставить по каждому из факторов оценку от 1 до 5. Часть полученной сегментации представлена ниже:

Владельцы дебетовых карт:

  • экономные — наивысшие оценки были поставлены фактору «стоимость годового обслуживания»;
  • используют карту для переводов — важен размер комиссии за переводы на карты других банков;
  • конформисты — оценили важность факторов «репутация бренда» и «отзывы» на 5 из 5, «стоимость обслуживания» — на 4.

Юридические лица, регулярно совершающие расчётно-кассовые операции:

  • мелкие предприниматели — основными факторами выбора являются «стоимость открытия счёта», «удобство подключения и пользования интернет-сервисами банка», «выгодные тарифы на обслуживание»;
  • юридические лица с большими траншами — наиболее важны установленные лимиты кассовых операций и надёжность и репутация банка.

Анализ ассоциативных правил

Анализ ассоциативных правил (анализ рыночной корзины) — анализ, который используется для нахождения устойчивых сочетаний товаров в покупках. Для его вычисления есть множество алгоритмов, первый из них — AIS — был разработан в 1993 году. Для анализа необходима база данных покупок, каждая покупка должна иметь уникальный идентификатор (часто в этой роли выступает номер чека) и позиции, которые входят в него.

Что в этих случаях делать компаниям, которые не входят в сегмент FMCG? Мы предлагаем использовать и используем в собственном бизнесе вместо номера чека уникальный id клиента. Таким образом мы вычисляем устойчивые паттерны в поведении клиентов относительно истории их покупок, на основании которых строим рекомендательную систему.

Допустим, покупки на Aviasales совершили 3 тысячи человек, на Booking — 1 тысяча. Клиентов, которые совершили покупки как на Aviasales, так и на Booking — 500. Объём клиентской базы равен 5 тысячам клиентов.

Читайте также:  Для каких типов данных целесообразно использовать указанный способ условного форматирования

На основании этих данных рассчитываются два показателя: достоверность (confidence) и поддержка (support) правила.

Поддержка — доля клиентов, совершивших транзакции у обоих партнёров от общего числа транзакций, то есть 10%.

Достоверность (мы её ещё называем силой связи) — доля клиентов, совершивших транзакции у обоих партнёров от количества транзакций каждого из них в отдельности.

Достоверность, как вы уже поняли, имеет два значения, в нашем случае для Booking она равна 50%, для Aviasales — 16,7%. Это означает, что клиент вероятнее совершает покупку на Booking и потом совершает на Aviasales, чем наоборот.

Как это применить в маркетинге? Если мы будем создавать акцию для покупателей, то она будет промоутировать Booking, так как после этого клиенты с большой вероятностью совершат покупку на Aviasales. Также мы можем настроить автоматическую рассылку: после совершения покупки на Booking клиенту будет отправляться промокод на следующую покупку Aviasales со скидкой на ограниченный срок. Ещё одним методом монетизации может являться введение сочетания этих двух партнёров в формате комбо-набора, при покупке которого будет увеличен общий кешбэк.

специализация

Директор по интернет-маркетингу

  • Научитесь эффективно управлять командой
  • Выстроите комплексную стратегию продвижения бизнеса
  • Сможете находить точки роста бизнеса и развивать их

Главные ошибки при сегментации аудитории

При всей доступности и понятности способов и методов сегментации собственной целевой аудитории многие специалисты по маркетингу допускают ошибки, проделывая эту работу. О семи из них пойдёт речь ниже.

1. Основываться только на половозрастных признаках клиентов

Это, по моему мнению, самая большая ошибка, которую можно допускать при сегментации — делать выводы исключительно на основании возраста и пола потребителей. Редко удаётся найти корреляцию демографических показателей и поведения пользователя. Единственный релевантный пример был получен нами при выявлении закономерности в поведении собственной аудитории. Мы считали отношение клиентов, совершающих транзакции, по возрасту и полу к общему количеству клиентов данного возраста и пола, процент кратно уменьшался для женщин от 35 лет, у мужчин спад был не так значителен. На основании этого было принято решение создавать обучающие видеоролики по совершению онлайн-покупок на Lamoda и Aliexpress.

На самом деле часто приходится встречаться с этой ошибкой. Для одного из наших клиентов — сети продовольственного ретейла — мы с коллегой проводили обучение по аналитике. Буквально с первого взгляда я была приобщена к «поколению Y» и опрошена на предмет того, что может привлечь меня в схожий магазин и заставить начать принимать участие в акциях. Если бы коллеги основывались на моём возрасте и поле, то мне наверняка предложили промо с героями популярных сериалов. Но тогда я возвращалась домой в то время, когда магазины данного формата были закрыты, и с целью экономии времени я заказывала доставку продуктов на дом через интернет-магазин. На основании этого мне стоило предложить готовые наборы товаров, которые я могла забрать по пути домой в одном из пунктов выдачи.

2. Не обрабатывать данные

Данные, содержащие ошибочные или критические значения, могут привести к значительным ошибкам в результате сегментации. Например, если не исключить выбросы перед проведением RFM-анализа, будут слишком расширены границы кластеров. Таким образом, количество клиентов в кластере r2f2m2 будет не соответствовать действительности, и вы не сможете выделить ключевые сегменты для работы.

3. Не ограничивать период и географию

Проведение сегментации без учёта внешних факторов, влияющих на поведение клиентов, может привести к разрозненным или даже неверным результатам. Например, нельзя проводить анализ на совокупности данных по жителям столицы и регионов, так как существует отличие в уровне жизни и заработных платах, высокий средний чек в регионе может быть в границах среднего для Москвы. Аналогично в течение пяти лет сбора данных у вас наверняка была значительно скорректирована ассортиментная матрица, также менялись экономические условия, что говорит о невозможности их равносильного представления в одном массиве.

4. Не проводить тестирование

Сделать сегментацию и продумать механику взаимодействия с каждым сегментом — ещё не вся работа. Необходимо следить за реакцией клиентов, подбирать подходящие каналы коммуникации и тестировать гипотезы.

Мы часто создаём сегментированные рассылки и промопосты в социальных сетях. Например, опытным путём мы выяснили, что клиенты, которые не совершали у нас покупки три месяца, чаще всего скрывали рекламные объявления в социальных сетях, направленные на их возвращение. Но при этом достаточно эффективно для них сработала отправка email-писем с акционным предложением на продление абонентской платы.

5. Не учитывать активность клиентов

Представим, что аналитик провёл достаточно сложный кластерный анализ и нашёл сегмент клиентов — владельцев кошек — по принципу регулярных покупок кошачьего корма. Он рад и счастлив, идёт с этим инсайтом к директору по маркетингу, в итоге компания отправляет рассылку этим клиентам с акцией на новый премиум-корм со скидкой 50%. Но в результате конверсия в переход по ссылке из письма ниже ожидаемой. Всё из-за того, что при формировании списка email-аналитик не учёл факт, что анализ он проводил по данным за 3 года, и 50% покупателей более года не совершали покупки.

В первом пункте я приводила пример про интернет-магазин продуктов — это был «Утконос». Живя в Москве, я была предельно к нему лояльна, мне нравился их ассортимент, удобное время доставки: они могли доставлять еду даже в 3 ночи. Учитывая мой прежний график, это было весьма кстати, заказы я совершала минимум раз в месяц. Но вот уже 4 месяца я живу в Санкт-Петербурге, а SMS-сообщения от любимого когда-то «Утконоса», осуществляющего доставку продуктов только по Москве, мне продолжают приходить. Отсутствие заказов в течение срока, в четыре раза превышающий мой средний интервал, их не смущает, они тратят впустую бюджет на рассылки, а у меня фактически нет возможности совершить повторный заказ.

6. Не обновлять сегментацию

Данные сегментации, как и любые другие, имеют свойство устаревать. И скорость этого зависит от особенностей бизнеса. Для ретейла, например, максимальная длительность актуальности сегментации — месяц. Наиболее оптимальное решение — настроить автоматическое обновление или создать BI-дашборд для регулярного контроля показателей, влияющих на результат сегментации. Если такой возможности нет, то сегментацию стоит регулярно обновлять вручную.

7. Использовать сегментацию только с целью определения ЦА

Несомненно важно понимать, кто ваши клиенты, но это далеко не единственное применение сегментации. Важно строить коммуникацию с клиентами и в целом маркетинговую политику, используя данные. Разным сегментам должны посылаться разные ключевые сообщения, им интересны разные предложения и товары. Это один из способов существенно улучшить ваш бизнес. Не используя его, вы теряете конкурентное преимущество.

Правильно определять, сегментировать и работать со своей целевой аудиторией — важный навык современного специалиста по маркетингу. В этом материале были рассмотрены цели и задачи сегментации, методологии и виды анализа, главные ошибки при проведении сегментации. Используйте эту информацию, профессионально работайте с собственными покупателями, и успех вашего бизнеса не заставит себя долго ждать.

12 максимально практических книг по маркетингу

Мнение автора и редакции может не совпадать. Хотите написать колонку для Нетологии? Читайте наши условия публикации. Чтобы быть в курсе всех новостей и читать новые статьи, присоединяйтесь к Телеграм-каналу Нетологии.

Источник