5 способов применения альдегиды

Содержание
  1. 5 способов применения альдегиды
  2. Альдегиды и кетоны
  3. Строение карбонильных соединений
  4. Номенклатура карбонильных соединений
  5. Изомерия карбонильных соединений
  6. Изомерия альдегидов
  7. Изомерия кетонов
  8. Физические свойства альдегидов и кетонов
  9. Химические свойства альдегидов и кетонов
  10. 1.1. Гидрирование
  11. 1.2. Присоединение воды
  12. 1.3. Присоединение спиртов
  13. 1.4. Присоединение циановодородной (синильной) кислоты
  14. 2. Окисление альдегидов и кетонов
  15. 2.1. Окисление гидроксидом меди (II)
  16. 2.2. Окисление аммиачным раствором оксида серебра
  17. 2.3. Жесткое окисление
  18. 2.4. Горение карбонильных соединений
  19. 3. Замещение водорода у атома углерода, соседнего с карбонильной группой
  20. 4. Конденсация с фенолами
  21. 5. Полимеризация альдегидов
  22. Получение карбонильных соединений
  23. 1. Окисление спиртов
  24. 1.1. Окисление спиртов оксидом меди (II)
  25. 1.2. Окисление спиртов кислородом на меди
  26. 1.3. Окисление спиртов сильными окислителями
  27. 2. Дегидрирование спиртов
  28. 3. Гидратация алкинов
  29. 4. Гидролиз дигалогенпроизводных алканов
  30. 5. Пиролиз солей карбоновых кислот
  31. 6. Кумольный способ получения ацетона
  32. 7. Каталитическое окисление алкенов

5 способов применения альдегиды

Из карбонильных соединений наибольшее применение находят формальдегид, ацетальдегид и ацетон.

Формальдегид (метаналь, муравьиный альдегид) Н-СНО широко используется для получения фенолформальдегидных и мочевино-формальдегидных (карбамидных) смол, пластмасс, для синтеза лекарственных средств (уротропин), продуктов органического синтеза, как дезинфицирующее средство и консервант биологических и анатомических препаратов, в кожевенном производстве – для обработки кож.

40% водный раствор формальдегида называют формалином. Его использование основано на свойстве свертывать белок. Действуя на белок, формалин делает его плотным, нерастворимым в воде и, главное, предохраняет от гниения. Поэтому его применяют для консервирования анатомических препаратов. Формалин прекрасно сохраняет костный материал, необходимый для восстановления живых тканей, проведения пластических операций.

В кожевном производстве дубящее действие формалина также основано на способности свертывать белок, в результате чего кожа твердеет и не подвергается гниению.

Вследствие высокой токсичности, обусловленной способностью формальдегида свертывать белки, он может использоваться лишь в качестве средства для дезинфекции помещений, хирургических инструментов.

Формалин применяется в сельском хозяйстве для дезинфекции зерно- и овощехранилищ, парников и теплиц, для протравливания семян с целью уничтожения личинок вредителей.

Большое количество метаналя используют для получения фенолформальдегидной смолы при его взаимодействии с фенолом. Эта смола необходима для производства различных пластмасс. Пластмассы, изготовленные из фенолформальдегидной смолы в сочетании с рзличными наполнителями, называют фенопластами.

На основе фенолформальдегидных смол готовят клеи, лаки, эмали, краски, политуры. Из полиформальдегида изготавливают литые и пленочные изделия.

Древесно-стружечные плиты (ДСП) изготавливают из древесных опилок и фенолформальдегидных смол. Мебель, изготовленная из таких плит, выделяет формальдегид и поэтому представляет опасность для здоровья. Помещение, где находится такая мебель, следует часто проветривать.

При взаимодействии формальдегида с карбамидом СО(NH2)2 получают карбамидную смолу, а из нее – аминопласты. Из этих пластмасс изготавливают микропористые материалы для нужд электротехники (выключатели, розетки и др.).

Немецкий химик А. Байер в 1872 г. из фенола и формальдегида получил смолообразный продукт. Бельгийский ученый Л. Бакеланд разработал способ получения этого вещества в промышленности. Так, с 1912 г. производится фенолформальедгидная смола, названная бакелитом.

А.М. Бутлеров в 1860 г. впервые синтезировал из формальдегида и аммиака органическое вещество гексаметилентетрамин, или утротропин, которое используется в медицине.

Взаимодействием формальдегида с аммиаком получают уротропин – лекарственный препарат (используют в качестве мочегонного средства, при лечении почечных заболеваний).

Иногда спрессованный в виде брикетов уротропин применяют в качестве горючего (сухой спирт).

Уротропин применяют также в качестве ингибитора кислотной коррозии металлов и в производстве взрывчатых веществ.

Нитрование уротропина приводит к образованию сильного взрывчатого вещества «гексоген»:

Ацетальдегид (уксусный альдегид, этаналь) СН3-СНО находит широкое применение в промышленном органическом синтезе. Он служит сырьем для получения уксусной кислоты, уксусного ангидрида, этилацетата, хлораля, этилового и бутилового спиртов, синтетических смол и ряда других соединений.

Ацетон (пропанон-2, диметилкетон) СН3СОСН3 применяется в лакокрасочной промышленности, в производстве ацетатного шелка, пироксилина (бездымного пороха), киноплёнки. Благодаря сравнительно малой токсичности используется в пищевой и фармацевтической промышленности. Он служит исходным веществом при производстве небьющегося органического стекла.

Высшие непредельные и ароматические альдегиды и кетоны входят в состав эфирных масел и содержатся во многих цветах, фруктах, плодах, душистых и пряных растениях. Из-за приятного запаха они широко применяются в парфюмерии.

Ароматический кетон бензофенон (дифенилкетон) 6Н5)2С=О с запахом герани, используется в парфюмерных композициях и для ароматизации мыла. Бензофенон и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара. Кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов.

Читайте также:  Способы избегания неблагоприятных условий среды

Алифатический пеларгоновый альдегид (нониловый альдегид) СН3(СН2)7СНО содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ванилин C8H8O3 как душистое вещество используют в пищевой и парфюмерной промышленности. Но в последнее время чаще используется синтетический ванилин — широко известная ароматизирующая добавка в кондитерские изделия. Ванилин является исходным веществом в синтезе противотуберкулезного препарата «Фтивазида».

Коричный альдегид С6Н5СН=СНСНО применяется в кулинарии в виде палочек или порошка.

Цитраль C10H16O имеет интенсивный лимонный запах и является важнейшим компонентом композиций и отдушек средств бытовой химии, косметических и парфюмерных веществ.

Многие насекомые при нападении врагов используют средства химической защиты – выделяют соединения, которые обладают сильным, летучим запахом. Эти соединения оказывают раздражающее действие, а капли попавшие на покровы хищника могут вызвать раздражение и зуд.

Гидрооксицитронеллаль (7-гидрокси-3,7-диметил-октаналъ) (СН3)2С(ОН)(СН2)3СН(СН)зСН2СНО – густая бесцветная жидкость со свежим запахом липы, с нотой ландыша. Его используют для приготовления многих композиций и отдушек.

Бензальдегид С6Н5СН=О обладает запахом горького миндаля. Бензальдегид содержится в эфирных маслах, а в виде гликозида амигдалина – в семенах горького миндаля, косточек вишни, абрикоса, персика.

Он применяется в качестве компонента парфюмерных композиций и пищевых эссенций как сырье для синтеза душистых веществ – коричного альдегида, коричной кислоты, бензилбензоата, трифенилметановых красителей.

Акролеин (пропеналь) СН2=СН-СНО является исходным сырьем для синтеза многих органических соединений. Его применяют для получения пластмасс, отличающихся большой твердостью, акрилонитрила, глицерина, аллилового спирта, акриловой кислоты, лекарственных средств.

Кротоновый альдегид CH3CH=CHCHO – сильный лакриматор, используется для получения бутанола, сорбиновой и масляной кислот. Содержится в соевом масле.

Фенилэтаналь (фенилуксусный альдегид) C6H5CH2CHO имеет запах гиацинта. Добавление незначительного количества его к парфюмерным композициям придает им приятный цветочный оттенок.

Обепин (анисовый альдегид) C8H8O2 как душистое вещество с запахом, напоминающим запах цветов боярышника, используют при изготовлении композиций для духов и одеколонов, отдушек для косметических средств. В природе он найден в маслах аниса, фенхеля, акации, укропа, боярышника.

Ацетофенон (метилфенилкетон) C6H5COCH3 используют как душистое вещество в парфюмерии, а также в синтезе некоторых лекарственных препаратов.

Диацетил (2,3-бутандион, диметилглиоксаль) С4H6O2 – имеет запах свежих сливок, используется как пищевая добавка для придания продуктам запаха масла или сыра.

Циклогексанон С6Н10О применяется в синтезе капролактама – мономера в производстве поликапроамида (капрон, дедерон, нейлон-6 и др.

Источник

Альдегиды и кетоны

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами .

Структурная формула кетонов:

Строение карбонильных соединений

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует три σ-связи и одну π-связь.

Одна из σ–связей – связь С–О, все три σ–связи расположены в одной плоскости под углом 120 о друг к другу.

π-Связь образована р-электронами атомов углерода и кислорода.

Из-за большей электроотрицательности атома кислорода по сравнению с атомом углерода связь С=О сильно поляризована, электронная плотность смещена к более электроотрицательному атому кислорода.

На атоме кислорода возникает частичный отрицательный (δ – ), а на атоме углерода – частичный положительный (δ + ) заряды.

Номенклатура карбонильных соединений

  • По систематической номенклатуре к названию углеводорода добавляют суффикс «-АЛЬ».

Нумерация ведется от атома углерода карбонильной группы.

Например, 2-метилпропаналь

  • К названию кетонов добавляют в название суффикс «-ОН». После этого добавляют номер атомов углерода карбонильной группы.
Например, пентанон-2

  • Тривиальные названия альдегидов и кетонов приведены в таблице.

Изомерия карбонильных соединений

Изомерия альдегидов

Для альдегидов характерна структурная изомерия – изомерия углеродного скелета и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Читайте также:  Способы приготовления карася обыкновенного

Изомерия углеродного скелета характерна для альдегидов, которые содержат не менее четырех атомов углерода.

Например. Ф ормуле С4Н8О соответствуют два альдегида-изомера углеродного скелета
Бутаналь 2-Метилпропаналь

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Альдегиды являются межклассовыми изомерами с кетонами, непредельными спиртами и непредельными простыми эфирами, содержащими одну двойную связь в молекуле. Общая формула этих классов органических соединений — CnH2nО.

Межклассовая изомерия характерна для альдегидов, которые содержат не менее трех атомов углерода.

Например. Межклассовые изомеры с общей формулой С3Н6О: пропаналь СН3–CH2–CHO и ацетон CH3–СO–CH3
Пропаналь Ацетон (пропанон)

Изомерия кетонов

Для кетонов характерна изомерия углеродного скелета, изомерия положения карбонильной группы и межклассовая изомерия.

Изомерия углеродного скелета характерна для кетонов, которые содержат не менее пяти атомов углерода.

Например. Ф ормуле С5Н10О соответствуют кетоны-изомеры углеродного скелета
Пентанон-2 3-Метилбутанон-2

Изомерия положения карбонильной группы характерна для кетонов, которые содержат не менее пяти атомов углерода.

Например. Ф ормуле С5Н10О соответствуют два кетона-изомера углеродного скелета
Пентанон-2 Пентанон-3

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Кетоны являются межклассовыми изомерами с альдегидами, непредельными спиртами и непредельными простыми эфирами, содержащими одну двойную связь в молекуле. Общая формула этих классов органических соединений — CnH2nО.

Межклассовая изомерия характерна для кетонов, которые содержат не менее трех атомов углерода.

Например. Межклассовые изомеры с общей формулой С3Н6О: пропаналь СН3–CH2–CHO и ацетон CH3–СO–CH3
Пропаналь Ацетон (пропанон)

Физические свойства альдегидов и кетонов

Все альдегиды и кетоны, кроме формальдегида – жидкости. Лёгкие альдегиды хорошо растворимы в воде из-за водородных связей, которые они образуют с водой.

Химические свойства альдегидов и кетонов

1. Реакции присоединения

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

Полуацетали это соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

Вторичные спирты окисляются в кетоны:

в торичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + Cu(OH)2 = Cu + HCOOH + H2O

Чаще в этой реакции образуется оксид меди (I):

HCHO + 2Cu(OH)2 = Cu2O + HCOOH + 2H2O

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды.

Упрощенный вариант реакции:

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метаналь СН2О CO2 K2CO3
Альдегид R-СНО R-COOH R-COOK
Кетон R-COOH/ СО2 R-COOK/ K2СО3

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метаналя:

3. Замещение водорода у атома углерода, соседнего с карбонильной группой

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

4. Конденсация с фенолами

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.).

5. Полимеризация альдегидов

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Получение карбонильных соединений

1. Окисление спиртов

При окислении первичных спиртов образуются альдегиды, при окислении вторичных спиртов – кетоны.

1.1. Окисление спиртов оксидом меди (II)

Например, при окислении этанола оксидом меди образуется уксусный альдегид

Например, при окислении изопропанола оксидом меди образуется ацетон

1.2. Окисление спиртов кислородом на меди

При пропускании паров спирта с кислородом над медной сеткой образуются альдегиды и кетоны.

Например, при окислении пропанола-1 кислородом в присутствии меди образуется пропаналь

В промышленности формальдегид получают окислением метанола на серебряном катализаторе при температуре 650 о С и атмосферном давлении:

1.3. Окисление спиртов сильными окислителями

Вторичные спирты при этом окисляются до кетонов. Первичные спирты можно окислить до альдегидов, если предотвратить дальнейшее окисление альдегида (например, отгонять образующийся альдегид в ходе реакции).

2. Дегидрирование спиртов

При пропускании спирта над медной сеткой при нагревании образуются карбонильные соединения.

Например, при дегидрировании этанола образуется этаналь

3. Гидратация алкинов

Присоединение воды к алкинам в присутствии солей ртути (II) приводит к образованию карбонильных соединений.

Например, при гидратации ацетилена образуется уксусный альдегид

Например: при гидратации пропина образуется ацетон

4. Гидролиз дигалогенпроизводных алканов

Под действием водного раствора щелочи образуется неустойчивый диол с двумя ОН-группами при одном атоме С, он теряет воду, превращаясь в альдегид или кетон.

Например: при гидролизе 1,1-дихлорэтана образуется этаналь

5. Пиролиз солей карбоновых кислот

При нагревании солей карбоновых кислот и двухвалентных металлов образуются неорганические соли (карбонаты) и кетоны.

Например: п ри пиролизе ацетата кальция образуется ацетон и карбонат кальция:

6. Кумольный способ получения ацетона

Ацетон в промышленности получают каталитическим окислением кумола.

Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:

Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:

Суммарное уравнение реакции:

7. Каталитическое окисление алкенов

При окислении этилена кислородом в присутствии катализаторов образуется уксусный альдегид.

Источник

Читайте также:  Гималаи трифала способ применения
Оцените статью
Разные способы