- Определения вероятности событий — вычисление с примерами решения
- Способы определения вероятности событий
- Классическое определение вероятности
- Пример №1
- Геометрический способ определения вероятности
- Пример №2
- Статистический способ определения вероятности событий
- Косвенный способ определения вероятности событий
- Теория вероятностей, формулы и примеры
- Основные понятия
- Формулы по теории вероятности
- Случайные события. Основные формулы комбинаторики
- Классическое определение вероятности
- Геометрическое определение вероятности
- Сложение и умножение вероятностей
- Формула полной вероятности и формула Байеса
- Формула Бернулли
- Наивероятнейшее число успехов
- Формула Пуассона
- Теоремы Муавра-Лапласа
Определения вероятности событий — вычисление с примерами решения
Содержание:
Основные понятия теории вероятностей:
1. Предмет теории вероятностей.
Теория вероятностей — это математическая дисциплина, которая устанавливает взаимозависимость между случайными величинами в случайных массовых процессах. Одним из основных понятий в теории вероятностей является понятие случайного события.
Определение: Случайным событием называется событие, которое в результате проведения эксперимента может произойти или не произойти.
Например, при подбрасывании монеты нельзя угадать заранее, что выпадет: “решка” (аверс) или “орел” (реверс). Каждое из этих событий является простым и не может быть выражено через более простые события.
Определение: Элементарным событием называется событие, которое в результате проведения эксперимента может произойти или не произойти, а также не может быть представлено посредством более простых событий.
В теории вероятностей случайные элементарные события принято обозначать заглавными начальными буквами латинского алфавита
Определение: Сложным случайным событием называется событие, которое состоит из осуществления двух или более элементарных событий.
Определение: Эксперимент — это создание заранее заданного комплекса условий. Например, при подбрасывании монеты создают следующие условия: стол, на который падает монета, должен быть ровным, гладким, достаточно большим по площади, чтобы монета не могла скатиться.
Определение: Достоверным событием называется такое событие, которое обязательно произойдет в рамках данного опыта. Достоверное событие обозначается
Определение: Невозможным событием называется такое событие, которое ни при каких условиях не может произойти.
Невозможное событие обозначается
Например, совокупность выигрыша, проигрыша и ничья в шахматной партии образуют достоверное совокупное событие, т.е. одно из этих событий обязательно произойдет при игре в шахматы. При бросании кубика выпадение грани с 7 очками является невозможным событием.
Определение: Совместными событиями называются события, которые могут одновременно произойти в рамках данного опыта, все другие события называются несовместными.
Например, при бросании кубика выпадение грани с 4 очками (событие А) и выпадение четной грани (событие В) являются совместными событиями, а выпадение грани с 3 очками (событие А) и выпадение четной грани (событие В) являются несовместными событиями.
Определение: Полной группой случайных событий называется совокупность таких несовместных событий, что в результате проведения эксперимента хотя бы одно из них обязательно произойдет.
Определение: Противоположными событиями называются такие несовместные события, которые образуют полную группу (обозначаются Например, если событие А состоит в попадании снаряда в цель, то событие
состоит в том, что снаряд не попадет в цель.
Замечание: Если в словесном описании случайного события присутствуют слова “хотя бы один”, то такое событие противоположно событию, содержащему в своем словесном описании слова “ни один”.
Определение: Равновозможными событиями называются такие случайные события, которые в условиях эксперимента имеют объективно равные шансы не произойти или произойти.
Например, однородность материала кости и несмещенность центра тяжести кубика являются теми условиями, при которых объективно возможно выпадение любой грани кубика.
Способы определения вероятности событий
Существуют два способа определения вероятности события
- Теоретический способ основан на непосредственном (без проведения специального эксперимента) определении вероятности события по формуле: P(A)=m/n.
- Статистический способ основан на предварительном проведении большого числа испытаний. При этом подсчитывают вероятность по формуле: h (A) = k / L.
Классическое определение вероятности
Определение: Вероятностью события называется численная мера степени объективной возможности случайного события.
Классическое определение вероятности применяется для нахождения вероятности конечного числа несовместных и равновозможных событии, образующих полную группу.
Пример №1
Пусть в урне находится 6 шаров: 1 белый, 2 красных и 3 синих. Опыт состоит в том, что из урны наудачу извлекают один шар. Определить полную группу случайных событий и наиболее вероятное событие.
Решение:
Для данного опыта полная группа событий состоит из 6 равновозможных исходов. Обозначим через А событие, состоящее в том, что из урны извлекают белый шар; В — красный шар; С — синий шар. Очевидно, событие С является более объективно возможным событием, чем события А и В, так как синих шаров в урне больше, чем белых и красных.
Классическое определение вероятности состоит в следующем:
Определение: Вероятностью случайного элементарного события называется отношение числа элементарных исходов, благоприятствующих появлению этого события, к общему числу всех равновозможных, несовместных, элементарных исходов, образующих полную группу.
В Примере число исходов, благоприятствующих извлечению белого шара, равно m(А) = 1, красного шара — m(В) = 2 и синего шара — m(С) = 3. Общее число всех равновозможных, несовместных, элементарных исходов, образующих полную группу, равно числу шаров в урне, т.е. n = 6. Таким образом, вероятности извлечь из урны тот или иной шар равны отношению числа элементарных исходов, благоприятствующих появлению этого события, к общему числу всех равновозможных, несовместных, элементарных исходов, образующих полную группу:
В силу того,что события А, В и С образуют достоверное совокупное событие, то следовательно, вероятность достоверного события равна:
Если в рассматриваемом Примере. обозначить через D событие, состоящее в том, что из урны извлекают черный шар, то этому событию благоприятствует нуль исходов (m(D) = 0), так как в урне нет черных шаров. Следовательно, событие D является невозможным событием О, а его вероятность равна:
Из рассмотренного Примере. видно, что вероятности всех событий есть положительные величины, которые принимают значения между вероятностью невозможного (0) и вероятностью достоверного (1) событий, т.е.
Замечание: Вероятность любого случайного события есть безразмерная и положительная величина, принимающая значения из промежутка от 0 до 1. Чем ближе вероятность события к нулю, тем меньше его возможность появления в данном опыте. Чем ближе вероятность события к единице, тем выше его возможность появления в данном эксперименте.
Геометрический способ определения вероятности
Геометрическое определение вероятности применяется для вычисления вероятности бесконечного числа несовместных и равновозможных событий, образующих полную группу.
Пусть имеется некоторая область G, которая может быть представлена в виде линии, площади или объема. Внутри области G находится другая область g, внутрь которой должна попасть точка, наудачу брошенная в область G. Пусть событие А состоит в том, что при попадании в область g включается лампочка, а при попадании в область G лампочка не загорается. Обозначим размеры областей g и G через соответственно. Появлению события А благоприятствует размер области g, а размер области G определяет общее число возможных исходов, следовательно, вероятность появления события А равна
Пример №2
Пусть на нити длиной L подвешен груз. Определить вероятность разрыва нити в любой точке, отстоящей от точки подвеса не менее чем на расстоянии l.
Решение:
Пусть событие А состоит в том, что нить разорвется в любой точке, отстоящей от точки подвеса не менее чем на расстоянии l. Появлению этого события благоприятствуют все точки нити длиной L-l, т.е. , а длина всей нити равна L, т.е.
Согласно геометрическому определению вероятности вероятность появления события А равна
Статистический способ определения вероятности событий
Данный способ определения вероятности событий применяется тогда, когда неприменимы два вышеприведенных способа. В основу данного способа положена устойчивость частоты появления изучаемого события при достаточно большом числе проводимых опытов, т.е. P(A) = v(A). При небольшом числе испытаний частота носит случайный характер, но при она стабилизируется возле некоторого положения, характеризующего связь между комплексом условий и наблюдаемым событием (Рис. 1).
Рис. 1. Стабилизация частоты появления случайного события при
Косвенный способ определения вероятности событий
Данный способ определения вероятности событий применяется тогда, когда неприменимы три вышеприведенных способа. Он основан на теоремах теории вероятностей, которые рассматриваются ниже.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Предельные теоремы теории вероятностей
- Точечные оценки, свойства оценок
- Доверительный интервал для вероятности события
- Проверка гипотезы о равенстве вероятностей
- Многомерные случайные величины
- Случайные события — определение и вычисление
- Системы случайных величин
- Вероятность и риск
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Источник
Теория вероятностей, формулы и примеры
О чем эта статья:
Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!
Основные понятия
Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.
Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.
Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».
Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
- Дискретная случайная величина — величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, то есть образовывать счетное множество.
Элементы множества можно пронумеровать. Они могут быть как конечными, так и бесконечными. Например: количество выстрелов до первого попадания в цель.
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Вероятностное пространство — это тройка (Ω, Σ, Ρ) иногда обрамленная угловыми скобками: ⟨ , ⟩ , где
- Ω — это множество объектов, которые называют элементарными событиями, исходами или точками.
- Σ — сигма-алгебра подмножеств , называемых случайными событиями;
- Ρ — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .
Формулы по теории вероятности
Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.
Случайные события. Основные формулы комбинаторики
Классическое определение вероятности
Вероятностью события A в некотором испытании называют отношение:
P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A
- Вероятность достоверного события равна единице.
- Вероятность невозможного события равна нулю.
- Вероятность случайного события есть положительное число, заключенное между нулем и единицей.
Таким образом, вероятность любого события удовлетворяет двойному неравенству:
- 0 ≤ P(A) ≤ 1.
Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?
Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:
Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.
Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?
Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).
Геометрическое определение вероятности
Геометрическая вероятность события А определяется отношением:
P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно
Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.
Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?
- A — встреча с другом состоится, х и у — время прихода. Значит:
0 ≤ х, у ≤ 60. - В прямоугольной системе координат этому условию удовлетворяют точки, которые лежат внутри квадрата ОАВС. Друзья встретятся, если между моментами их прихода пройдет не более 5 минут, то есть:
x−y y.
P(A)=SG/SOABC= 60 * 60 — 55 * 5560 * 60 = 23144 = 0,16
У нас есть отличное онлайн обучение по математике для учеников с 1 по 11 классы, записывайся на пробное занятие!
Сложение и умножение вероятностей
- Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В можно записать так: A ⊂ B.
- События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается так: А = В.
- Суммой событий А и В называется событие А + В, которое наступает тогда, когда наступает хотя бы одно из событий: А или В.
Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:
P(A + B) = P(A) + P(B)
Эта теорема справедлива для любого числа несовместных событий:
Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:
- P(A1) + P(A2) + … + P(An) = 1. Такие события (гипотезы) используют при решении задач на полную вероятность.
Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:
P(A + B) = P(A) + P(B) − P(AB)
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:
P(AB) = P(A) * P(B)
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.
Найдем вероятности того, что формула содержится:
- только в одном справочнике;
- только в двух справочниках;
- во всех трех справочниках.
А — формула содержится в первом справочнике;
В — формула содержится во втором справочнике;
С — формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.
Формула полной вероятности и формула Байеса
Если событие А может произойти только при выполнении одного из событий B1, B2, . Bn, которые образуют полную группу несовместных событий — вероятность события А вычисляется по формуле полной вероятности:
Вновь рассмотрим полную группу несовместных событий B1, B2, . Bn, вероятности появления которых P(B1), P(B2), . P(Bn). Событие А может произойти только вместе с каким-либо из событий B1, B2, . Bn, которые называются гипотезами. Тогда по формуле полной вероятности: если событие А произошло — это может изменить вероятности гипотез P(B1), P(B2), . P(Bn).
По теореме умножения вероятностей:
Аналогично, для остальных гипотез:
Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.
Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.
- Возможны три гипотезы:
- А1 — на линию огня вызван первый стрелок,
- А2 — на линию огня вызван второй стрелок,
- А3 — на линию огня вызван третий стрелок.
- Так как вызов на линию огня любого стрелка равно возможен, то
- В результате опыта наблюдалось событие В — после произведенных выстрелов мишень не поражена. Условные вероятности этого события при наших гипотезах равны:
- По формуле Байеса находим вероятность гипотезы А1 после опыта:
Формула Бернулли
При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.
Примеры повторных испытаний:
- Бросаем игральный кубик, где вероятности выпадения определенной цифры одинаковы в каждом броске.
- Включаем лампы с заранее заданной одинаковой вероятностью выхода из строя каждой.
- Лучник повторяет выстрелы по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой.
Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.
- Обозначим вероятность появления события А в единичном испытании буквой р, значит:
p = P(A), а вероятность противоположного события (событие А не наступило) — буквой q
q = P(¯A) = 1 — p.
Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражается формулой Бернулли:
Pn(k) = Cn k * p k * q n-k , где q = 1 — p.
Биномиальное распределение — распределение числа успехов (появлений события).
Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.
Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂
Наивероятнейшее число успехов
Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:
np — q ≤ k ≤ np + p, где q=1−p
Так как np−q = np + p−1, то эти границы отличаются на 1. Поэтому k, являющееся целым числом, может принимать либо одно значение, когда np целое число (k = np), то есть когда np + p (а отсюда и np — q) нецелое число, либо два значения, когда np — q целое число.
Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.
- По условию дано: n = 730, p = 1/365, g = 364/365
- np — g = 366/365
- np + p = 731/365
- 366/365 ≤ m ≤ 731/365
- m = 2
Формула Пуассона
При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.
В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:
Здесь λ = np обозначает среднее число появлений события в n испытаниях.
Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.
События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).
При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.
Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.
- По условию дано: n = 1000, p = 0,002, λ = np = 2, k = 3.
- Искомая вероятность после подстановки в формулу:
P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.
Ответ: ориентировочно 0,18.
Теоремы Муавра-Лапласа
Пусть в каждом из n независимых испытаний событие A может произойти с вероятностью p, q = 1 — p (условия схемы Бернулли). Обозначим как и раньше, через Pn(k) вероятность ровно k появлений события А в n испытаниях.
Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.
Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:
- при больших x верно
Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.
Источник