Разложение многочлена способом группировки
О чем эта статья:
Основные понятия
Мы знаем, что слово «множитель» происходит от слова «умножать».
Возьмем, например, число 12. Чтобы разложить его на множители, нужно написать его по-другому, а именно в виде «произведения» множителей.
Число 12 можно получить, если умножить 2 на 6. А 6 можно представить, как произведение 2 и 3. Вот так:
Так выглядит пошаговое разложение на множители. Числа, которые подчеркнуты на картинке — это множители, которые дальше разложить уже нельзя.
Разложение многочлена на множители — это преобразование многочлена в произведение, которое равно данному многочлену.
5 способов разложения многочлена на множители
- Вынесение общего множителя за скобки.
- Формулы сокращенного умножения.
- Метод группировки.
- Выделение полного квадрата.
- Разложение квадратного трехчлена на множители.
Способ группировки множителей
Разложение на множители методом группировки возможно, когда многочлены не имеют общего множителя для всех членов многочлена.
Этот способ применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку. И тогда исходный многочлен будет представлен в виде произведения, что значительно облегчает задачу.
Разложить на множители методом группировки можно в три этапа:
- Объединить слагаемые многочлена в группы, которые содержат общий множитель. Для наглядности их можно подчеркнуть.
- Вынести общий множитель за скобки.
- Полученные произведения имеют общий множитель в виде многочлена, который нужно вынести за скобки.
Объединить члены многочлена в группы можно по-разному. И ее всегда группировка может быть удачной для последующего разложения на множители. В таком случае нужно продолжить эксперимент и попробовать объединить в группы другие члены многочлена.
Чтобы понять эти сложные выражения, применим правило группировки множителей при решении примеров. Рассмотрим два способа.
Пример 1. Разложить на множители методом группировки: up — bp + ud — bd.
up — bp + ud — bd = (up — bp) + (ud — bd)
Заметим, что в первой группе повторяется p, а во второй — d.
Вынесем в первой группе общий множитель p, а во второй общий множитель d.
Получим: p(u — b) + d(u — b).
Заметим, что общий множитель (u — b).
Вынесем его за скобки:
Группировка множителей выполнена.
up — bp + ud — bd = (up + ud) — (bp + bd)
Заметим, что в первой группе повторяется u, а во второй — b.
Вынесем в первой группе общий множитель u, а во второй общий множитель b.
Получим: u(p + d) — b(p + d).
Заметим, что общий множитель (p + d).
Вынесем его за скобки:
Группировка множителей выполнена.
От перестановки мест слагаемых сумма не меняется, поэтому оба ответа верны:
(u — b)(p + d) = (p + d)(u — b).
Вот так работает алгоритм разложения многочлена на множители способом группировки. Продолжим практиковаться на примерах.
Пример 2. Разложить на множители выражение: c(m — n) + d(m — n).
- Найдем общий множитель: (m — n)
- Вынесем общий множитель за скобки: (m — n)(c + d).
Ответ: c(m — n) + d(m — n) = (m — n)(c + d).
Пример 3. Разложить на множители с помощью группировки: 5x — 12z (x — y) — 5y.
5x — 12z (x — y) — 5y = 5x — 5y — 12z (x — y) = 5(x — y) — 12z (x — y) = (x — y) (5 — 12z)
Ответ: 5x — 12z (x — y) — 5y = (x — y) (5 — 12z).
Иногда для вынесения общего многочлена нужно заменить все знаки одночленов в скобках на противоположные. Для этого за скобки выносится знак минус, а в скобках у всех одночленов меняем знаки на противоположные.
Проверим как это на следующем примере.
Пример 4. Произвести разложение многочлена на множители способом группировки: ax 2 — bx 2 + bx — ax + a — b.
- Сгруппируем слагаемые по два и вынесем в каждой паре общий множитель за скобку:
ax 2 — bx 2 + bx — ax + a — b = (ax 2 — bx 2 ) + (bx — ax) + (a — b) = x 2 (a — b) — x(a — b) + (a — b)
Получили три слагаемых, в каждом из которых есть общий множитель (a — b).
- Теперь вынесем за скобку (a — b), используя распределительный закон умножения:
x 2 (a — b) + x(b — a) + (a — b) = (a — b)(x 2 + x + 1)
Ответ: ax 2 — bx 2 + bx — ax + a — b = (a — b)(x 2 + x + 1)
Источник